These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 36530419)

  • 41. Anti-Bacterial Effect of Cannabidiol against the Cariogenic
    Barak T; Sharon E; Steinberg D; Feldman M; Sionov RV; Shalish M
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of
    Lin Y; Chen J; Zhou X; Li Y
    Crit Rev Microbiol; 2021 Sep; 47(5):667-677. PubMed ID: 33938347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeted antimicrobial treatment to re-establish a healthy microbial flora for long-term protection.
    Eckert R; Sullivan R; Shi W
    Adv Dent Res; 2012 Sep; 24(2):94-7. PubMed ID: 22899688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Collagen Peptide in a Combinatorial Treatment with
    Jung HY; Cai JN; Yoo SC; Kim SH; Jeon JG; Kim D
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial Distribution and Chemical Tolerance of Streptococcus mutans within Dual-Species Cariogenic Biofilms.
    Nakanishi Y; Yamamoto T; Obana N; Toyofuku M; Nomura N; Kaneko A
    Microbes Environ; 2018 Dec; 33(4):455-458. PubMed ID: 30531153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. De novo synthetic short antimicrobial peptides against cariogenic bacteria.
    Wang Y; Fan Y; Zhou Z; Tu H; Ren Q; Wang X; Ding L; Zhou X; Zhang L
    Arch Oral Biol; 2017 Aug; 80():41-50. PubMed ID: 28366785
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploring the anti-caries properties of baicalin against
    Elango AV; Vasudevan S; Shanmugam K; Solomon AP; Neelakantan P
    Biofouling; 2021 Mar; 37(3):267-275. PubMed ID: 33719751
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Design, screening and antibacterial activity evaluation of the novel antibacterial peptide KR-1].
    He J; Liang D; Liang Y; Zuo S; Zhao W
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jun; 41(6):923-930. PubMed ID: 34238746
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Research Progress in the Relationship Between
    Zhang J; Xu X
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2022 Sep; 53(5):929-934. PubMed ID: 36224699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.
    Chen L; Ren Z; Zhou X; Zeng J; Zou J; Li Y
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):857-67. PubMed ID: 26526453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine.
    Kara D; Luppens SB; Cate JM
    Eur J Oral Sci; 2006 Feb; 114(1):58-63. PubMed ID: 16460342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Drug Repositioning Approach Reveals that Streptococcus mutans Is Susceptible to a Diverse Range of Established Antimicrobials and Nonantibiotics.
    Saputo S; Faustoferri RC; Quivey RG
    Antimicrob Agents Chemother; 2018 Jan; 62(1):. PubMed ID: 29061736
    [No Abstract]   [Full Text] [Related]  

  • 53. Investigation of drug resistance of caries-related streptococci to antimicrobial peptide GH12.
    Li X; Wang Y; Jiang X; Zeng Y; Zhao X; Washio J; Takahashi N; Zhang L
    Front Cell Infect Microbiol; 2022; 12():991938. PubMed ID: 36159653
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporin-Like Peptides Show Antimicrobial and Anti-Biofilm Activities against
    Wei H; Xie Z; Tan X; Guo R; Song Y; Xie X; Wang R; Li L; Wang M; Zhang Y
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repurposing Napabucasin as an Antimicrobial Agent against Oral Streptococcal Biofilms.
    Kuang X; Yang T; Zhang C; Peng X; Ju Y; Li C; Zhou X; Luo Y; Xu X
    Biomed Res Int; 2020; 2020():8379526. PubMed ID: 33274224
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antimicrobial and antibiofilm activities of Casearia sylvestris extracts from distinct Brazilian biomes against Streptococcus mutans and Candida albicans.
    Ribeiro SM; Fratucelli ÉDO; Bueno PCP; de Castro MKV; Francisco AA; Cavalheiro AJ; Klein MI
    BMC Complement Altern Med; 2019 Nov; 19(1):308. PubMed ID: 31718633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Dental Sealant Containing Dimethylaminohexadecyl Methacrylate Suppresses the Cariogenic Pathogenicity of
    Ibrahim MS; Ibrahim AS; Balhaddad AA; Weir MD; Lin NJ; Tay FR; Oates TW; Xu HHK; Melo MAS
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31315225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm.
    Yoo HJ; Jwa SK
    Arch Oral Biol; 2018 Apr; 88():42-46. PubMed ID: 29407750
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antimicrobial effects of herbal extracts on Streptococcus mutans and normal oral streptococci.
    Lee SH
    J Microbiol; 2013 Aug; 51(4):484-9. PubMed ID: 23990300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect.
    Pérez-Díaz MA; Boegli L; James G; Velasquillo C; Sánchez-Sánchez R; Martínez-Martínez RE; Martínez-Castañón GA; Martinez-Gutierrez F
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():360-6. PubMed ID: 26117766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.