These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36530667)

  • 1. An NLP tool for data extraction from electronic health records: COVID-19 mortalities and comorbidities.
    BuHamra SS; Almutairi AN; Buhamrah AK; Almadani SH; Alibrahim YA
    Front Public Health; 2022; 10():1070870. PubMed ID: 36530667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing.
    Izquierdo JL; Ancochea J; ; Soriano JB
    J Med Internet Res; 2020 Oct; 22(10):e21801. PubMed ID: 33090964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study.
    Homburg M; Meijer E; Berends M; Kupers T; Olde Hartman T; Muris J; de Schepper E; Velek P; Kuiper J; Berger M; Peters L
    J Med Internet Res; 2023 Oct; 25():e49944. PubMed ID: 37792444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARDSFlag: an NLP/machine learning algorithm to visualize and detect high-probability ARDS admissions independent of provider recognition and billing codes.
    Gandomi A; Wu P; Clement DR; Xing J; Aviv R; Federbush M; Yuan Z; Jing Y; Wei G; Hajizadeh N
    BMC Med Inform Decis Mak; 2024 Jul; 24(1):195. PubMed ID: 39014417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Language Processing for Rapid Response to Emergent Diseases: Case Study of Calcium Channel Blockers and Hypertension in the COVID-19 Pandemic.
    Neuraz A; Lerner I; Digan W; Paris N; Tsopra R; Rogier A; Baudoin D; Cohen KB; Burgun A; Garcelon N; Rance B;
    J Med Internet Res; 2020 Aug; 22(8):e20773. PubMed ID: 32759101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review.
    Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K
    Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Natural Language Processing Tool Offering Data Extraction for COVID-19 Related Information (DECOVRI).
    Heider PM; Pipaliya RM; Meystre SM
    Stud Health Technol Inform; 2022 Jun; 290():1062-1063. PubMed ID: 35673206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of the Disposition of Patients Hospitalized with COVID-19: Reading Discharge Summaries Using Natural Language Processing.
    Fernandes M; Sun H; Jain A; Alabsi HS; Brenner LN; Ye E; Ge W; Collens SI; Leone MJ; Das S; Robbins GK; Mukerji SS; Westover MB
    JMIR Med Inform; 2021 Feb; 9(2):e25457. PubMed ID: 33449908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural language processing enabling COVID-19 predictive analytics to support data-driven patient advising and pooled testing.
    Meystre SM; Heider PM; Kim Y; Davis M; Obeid J; Madory J; Alekseyenko AV
    J Am Med Inform Assoc; 2021 Dec; 29(1):12-21. PubMed ID: 34415311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural language processing systems for extracting information from electronic health records about activities of daily living. A systematic review.
    Wieland-Jorna Y; van Kooten D; Verheij RA; de Man Y; Francke AL; Oosterveld-Vlug MG
    JAMIA Open; 2024 Jul; 7(2):ooae044. PubMed ID: 38798774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System.
    Malden DE; Tartof SY; Ackerson BK; Hong V; Skarbinski J; Yau V; Qian L; Fischer H; Shaw SF; Caparosa S; Xie F
    JMIR Public Health Surveill; 2022 Dec; 8(12):e41529. PubMed ID: 36446133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.
    Park A; Hartzler AL; Huh J; McDonald DW; Pratt W
    J Med Internet Res; 2015 Aug; 17(8):e212. PubMed ID: 26323337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comprehensive Natural Language Processing Pipeline for the Chronic Lupus Disease.
    Lilli L; Bosello SL; Antenucci L; Patarnello S; Ortolan A; Lenkowicz J; Gorini M; Castellino G; Cesario A; D'Agostino MA; Masciocchi C
    Stud Health Technol Inform; 2024 Aug; 316():909-913. PubMed ID: 39176940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing a disease database and using natural language processing to capture and standardize free text clinical information.
    Raza S; Schwartz B
    Sci Rep; 2023 May; 13(1):8591. PubMed ID: 37237101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision Assessment of COVID-19 Phenotypes Using Large-Scale Clinic Visit Audio Recordings: Harnessing the Power of Patient Voice.
    Barr PJ; Ryan J; Jacobson NC
    J Med Internet Res; 2021 Feb; 23(2):e20545. PubMed ID: 33556031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.