These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36530939)

  • 1. Precursor-Mediated Colloidal Synthesis of Compositionally Tunable Cu-Sb-M-S (M = Zn, Co, and Ni) Nanocrystals and Their Transport Properties.
    Zubair M; Lebedev VA; Mishra M; Adegoke TE; Amiinu IS; Zhang Y; Cabot A; Singh S; Ryan KM
    Chem Mater; 2022 Dec; 34(23):10528-10537. PubMed ID: 36530939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal Nanocrystals as Precursors and Intermediates in Solid State Reactions for Multinary Oxide Nanomaterials.
    Buonsanti R; Loiudice A; Mantella V
    Acc Chem Res; 2021 Feb; 54(4):754-764. PubMed ID: 33492926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects of Colloidal Copper Chalcogenide Nanocrystals.
    van der Stam W; Berends AC; de Mello Donega C
    Chemphyschem; 2016 Mar; 17(5):559-81. PubMed ID: 26684665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsuming the Metal Seed to Transform Binary Metal Chalcogenide Nanocrystals into Multinary Compositions.
    Kapuria N; Conroy M; Lebedev VA; Adegoke TE; Zhang Y; Amiinu IS; Bangert U; Cabot A; Singh S; Ryan KM
    ACS Nano; 2022 Jun; 16(6):8917-8927. PubMed ID: 35593407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional copper based colloidal nanocrystals: synthesis and applications.
    Kapuria N; Patil NN; Ryan KM; Singh S
    Nanoscale; 2022 Feb; 14(8):2885-2914. PubMed ID: 35156983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth kinetics and mechanisms of multinary copper-based metal sulfide nanocrystals.
    Chen K; Zhou J; Chen W; Zhong Q; Yang T; Yang X; Deng C; Liu Y
    Nanoscale; 2017 Aug; 9(34):12470-12478. PubMed ID: 28815235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.
    Kovalenko MV; Spokoyny B; Lee JS; Scheele M; Weber A; Perera S; Landry D; Talapin DV
    J Am Chem Soc; 2010 May; 132(19):6686-95. PubMed ID: 20423085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot-Injection Synthesis of Cu-Doped Cu₂ZnSnSe₄ Nanocrystals to Reach Thermoelectric zT of 0.70 at 450°C.
    Chen D; Zhao Y; Chen Y; Wang B; Wang Y; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24403-8. PubMed ID: 26497358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general and rapid room-temperature synthesis approach for metal sulphide nanocrystals with tunable properties.
    Liu Y; Liu M; Yin D; Zhu D; Swihart MT
    Nanoscale; 2018 Dec; 11(1):136-144. PubMed ID: 30525174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications.
    Palchoudhury S; Ramasamy K; Gupta A
    Nanoscale Adv; 2020 Aug; 2(8):3069-3082. PubMed ID: 36134292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms.
    Qiao L; Swihart MT
    Adv Colloid Interface Sci; 2017 Jun; 244():199-266. PubMed ID: 27246718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binary and Ternary Colloidal Cu-Sn-Te Nanocrystals for Thermoelectric Thin Films.
    Yin D; Dun C; Zhang H; Fu Z; Gao X; Wang X; Singh DJ; Carroll DL; Liu Y; Swihart MT
    Small; 2021 Mar; 17(11):e2006729. PubMed ID: 33624942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal Two-Dimensional Metal Chalcogenides: Realization and Application of the Structural Anisotropy.
    Hu Z; O'Neill R; Lesyuk R; Klinke C
    Acc Chem Res; 2021 Oct; 54(20):3792-3803. PubMed ID: 34623803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][M(II)(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium).
    Hu KL; Kurmoo M; Wang Z; Gao S
    Chemistry; 2009 Nov; 15(44):12050-64. PubMed ID: 19774570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot noninjection synthesis of Cu-doped Zn(x)Cd(1-x)S nanocrystals with emission color tunable over entire visible spectrum.
    Zhang W; Zhou X; Zhong X
    Inorg Chem; 2012 Mar; 51(6):3579-87. PubMed ID: 22364175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals.
    Li H; Jia C; Meng X; Li H
    Front Chem; 2018; 6():652. PubMed ID: 30671431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange.
    Akkerman QA; Genovese A; George C; Prato M; Moreels I; Casu A; Marras S; Curcio A; Scarpellini A; Pellegrino T; Manna L; Lesnyak V
    ACS Nano; 2015 Jan; 9(1):521-31. PubMed ID: 25551255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S.
    Zou Y; Su X; Jiang J
    J Am Chem Soc; 2013 Dec; 135(49):18377-84. PubMed ID: 24283701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.