These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36531413)

  • 1. Corrigendum: How could the use of crop wild relatives in breeding increase the adaptation of crops to marginal environments?
    Renzi JP; Coyne CJ; Berger J; von Wettberg E; Nelson M; Ureta S; Hernández F; Smýkal P; Brus J
    Front Plant Sci; 2022; 13():1101822. PubMed ID: 36531413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments?
    Renzi JP; Coyne CJ; Berger J; von Wettberg E; Nelson M; Ureta S; Hernández F; Smýkal P; Brus J
    Front Plant Sci; 2022; 13():886162. PubMed ID: 35783966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pangenomics and Crop Genome Adaptation in a Changing Climate.
    Petereit J; Bayer PE; Thomas WJW; Tay Fernandez CG; Amas J; Zhang Y; Batley J; Edwards D
    Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35956427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives.
    Warschefsky E; Penmetsa RV; Cook DR; von Wettberg EJ
    Am J Bot; 2014 Oct; 101(10):1791-800. PubMed ID: 25326621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reap the crop wild relatives for breeding future crops.
    Bohra A; Kilian B; Sivasankar S; Caccamo M; Mba C; McCouch SR; Varshney RK
    Trends Biotechnol; 2022 Apr; 40(4):412-431. PubMed ID: 34629170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrigendum: Editorial: Wild Plants as Source of New Crops.
    von Wettberg E; Davis TM; Smýkal P
    Front Plant Sci; 2020; 11():638134. PubMed ID: 33519885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomics strategies for germplasm characterization and the development of climate resilient crops.
    Henry RJ
    Front Plant Sci; 2014; 5():68. PubMed ID: 24616732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using wild relatives and related species to build climate resilience in Brassica crops.
    Quezada-Martinez D; Addo Nyarko CP; Schiessl SV; Mason AS
    Theor Appl Genet; 2021 Jun; 134(6):1711-1728. PubMed ID: 33730183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orphan Crops and their Wild Relatives in the Genomic Era.
    Ye CY; Fan L
    Mol Plant; 2021 Jan; 14(1):27-39. PubMed ID: 33346062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils-a review.
    Hussain MI; Farooq M; Muscolo A; Rehman A
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28695-28729. PubMed ID: 32462627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Environment Associations, an Innovative Tool for Studying Heritable Evolutionary Adaptation in Orphan Crops and Wild Relatives.
    Cortés AJ; López-Hernández F; Blair MW
    Front Genet; 2022; 13():910386. PubMed ID: 35991553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for utilization of crop wild relatives in plant breeding programs.
    Kashyap A; Garg P; Tanwar K; Sharma J; Gupta NC; Ha PTT; Bhattacharya RC; Mason AS; Rao M
    Theor Appl Genet; 2022 Dec; 135(12):4151-4167. PubMed ID: 36136128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives.
    Iriondo JM; Milla R; Volis S; Rubio de Casas R
    Plant Biol (Stuttg); 2018 Jan; 20 Suppl 1():78-88. PubMed ID: 28976618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability.
    Mickelbart MV; Hasegawa PM; Bailey-Serres J
    Nat Rev Genet; 2015 Apr; 16(4):237-51. PubMed ID: 25752530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for the accelerated improvement of the resilient crop quinoa.
    López-Marqués RL; Nørrevang AF; Ache P; Moog M; Visintainer D; Wendt T; Østerberg JT; Dockter C; Jørgensen ME; Salvador AT; Hedrich R; Gao C; Jacobsen SE; Shabala S; Palmgren M
    J Exp Bot; 2020 Sep; 71(18):5333-5347. PubMed ID: 32643753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation.
    Burgarella C; Barnaud A; Kane NA; Jankowski F; Scarcelli N; Billot C; Vigouroux Y; Berthouly-Salazar C
    Front Plant Sci; 2019; 10():4. PubMed ID: 30774638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.).
    Kantar MB; Sosa CC; Khoury CK; Castañeda-Álvarez NP; Achicanoy HA; Bernau V; Kane NC; Marek L; Seiler G; Rieseberg LH
    Front Plant Sci; 2015; 6():841. PubMed ID: 26500675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abiotic stress QTL in lettuce crop-wild hybrids: comparing greenhouse and field experiments.
    Hartman Y; Hooftman DA; Uwimana B; Schranz ME; van de Wiel CC; Smulders MJ; Visser RG; Michelmore RW; van Tienderen PH
    Ecol Evol; 2014 Jun; 4(12):2395-409. PubMed ID: 25360276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impacts of Domestication and Breeding on Nitrogen Fixation Symbiosis in Legumes.
    Liu J; Yu X; Qin Q; Dinkins RD; Zhu H
    Front Genet; 2020; 11():00973. PubMed ID: 33014021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.