These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 36531502)
61. Distribution of Nonperfusion and Neovascularization on Ultrawide-Field Fluorescein Angiography in Proliferative Diabetic Retinopathy (RECOVERY Study): Report 1. Fan W; Nittala MG; Velaga SB; Hirano T; Wykoff CC; Ip M; Lampen SIR; van Hemert J; Fleming A; Verhoek M; Sadda SR Am J Ophthalmol; 2019 Oct; 206():154-160. PubMed ID: 31078541 [TBL] [Abstract][Full Text] [Related]
62. Imaging Artifacts and Quality Evaluation with Ultrawide-Field Swept-Source OCTA in Diabetic Retinopathy. Wang XN; Li S; Cai X; Li T; Long D; Wu Q Curr Eye Res; 2024 Apr; 49(4):410-416. PubMed ID: 38116796 [TBL] [Abstract][Full Text] [Related]
63. Inference of Capillary Nonperfusion Progression on Widefield OCT Angiography in Diabetic Retinopathy. Yoshida M; Murakami T; Kawai K; Nishikawa K; Ishihara K; Mori Y; Tsujikawa A Invest Ophthalmol Vis Sci; 2023 Oct; 64(13):24. PubMed ID: 37847225 [TBL] [Abstract][Full Text] [Related]
64. Widefield optical coherence tomography angiography in diabetic retinopathy. Mastropasqua R; D'Aloisio R; Di Antonio L; Erroi E; Borrelli E; Evangelista F; D'Onofrio G; Di Nicola M; Di Martino G; Toto L Acta Diabetol; 2019 Dec; 56(12):1293-1303. PubMed ID: 31468199 [TBL] [Abstract][Full Text] [Related]
65. Ultra-wide field swept-source optical coherence tomography angiography in patients with diabetes without clinically detectable retinopathy. Yang J; Zhang B; Wang E; Xia S; Chen Y BMC Ophthalmol; 2021 May; 21(1):192. PubMed ID: 33933028 [TBL] [Abstract][Full Text] [Related]
66. Utilisation of optical coherence tomography and optical coherence tomography angiography to assess retinal neovascularisation in diabetic retinopathy. DaCosta J; Bhatia D; Crothers O; Talks J Eye (Lond); 2022 Apr; 36(4):827-834. PubMed ID: 33911212 [TBL] [Abstract][Full Text] [Related]
67. Values of optical coherence tomography angiography for diagnosing diabetic retinopathy and evaluating treatment outcomes. Huang Y; Kong X; Zhou L; Shen P; Su P; Su H J Fr Ophtalmol; 2023 Jan; 46(1):25-32. PubMed ID: 36470750 [TBL] [Abstract][Full Text] [Related]
68. Longitudinal neovascular changes on optical coherence tomography angiography in proliferative diabetic retinopathy treated with panretinal photocoagulation alone versus with intravitreal conbercept plus panretinal photocoagulation: a pilot study. He F; Yu W Eye (Lond); 2020 Aug; 34(8):1413-1418. PubMed ID: 31719675 [TBL] [Abstract][Full Text] [Related]
69. Optical coherence tomography angiography in diabetic retinopathy: A major review. Nouri H; Abtahi SH; Mazloumi M; Samadikhadem S; Arevalo JF; Ahmadieh H Surv Ophthalmol; 2024; 69(4):558-574. PubMed ID: 38521424 [TBL] [Abstract][Full Text] [Related]
70. Role of Optical Coherence Tomography Angiography to differentiate Intraretinal microvascular abnormalities and retinal neovascularization in Diabetic Retinopathy. Memon AS; Memon NA; Mahar PS Pak J Med Sci; 2022; 38(1):57-61. PubMed ID: 35035401 [TBL] [Abstract][Full Text] [Related]
74. Optical coherence tomography angiography reveals progressive worsening of retinal vascular geometry in diabetic retinopathy and improved geometry after panretinal photocoagulation. Fayed AE; Abdelbaki AM; El Zawahry OM; Fawzi AA PLoS One; 2019; 14(12):e0226629. PubMed ID: 31887149 [TBL] [Abstract][Full Text] [Related]
75. COMPARING FUNDUS FLUORESCEIN ANGIOGRAPHY AND SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN THE EVALUATION OF DIABETIC MACULAR PERFUSION. La Mantia A; Kurt RA; Mejor S; Egan CA; Tufail A; Keane PA; Sim DA Retina; 2019 May; 39(5):926-937. PubMed ID: 29346244 [TBL] [Abstract][Full Text] [Related]
76. Topographical Response of Retinal Neovascularization to Aflibercept or Panretinal Photocoagulation in Proliferative Diabetic Retinopathy: Post Hoc Analysis of the CLARITY Randomized Clinical Trial. Halim S; Nugawela M; Chakravarthy U; Peto T; Madhusudhan S; Lenfestey P; Hamill B; Zheng Y; Parry D; Nicholson L; Greenwood J; Sivaprasad S JAMA Ophthalmol; 2021 May; 139(5):501-507. PubMed ID: 33704351 [TBL] [Abstract][Full Text] [Related]
77. Quantification of Retinal Nonperfusion and Neovascularization With Ultrawidefield Fluorescein Angiography in Patients With Diabetes and Associated Characteristics of Advanced Disease. Yu G; Aaberg MT; Patel TP; Iyengar RS; Powell C; Tran A; Miranda C; Young E; Demetriou K; Devisetty L; Paulus YM JAMA Ophthalmol; 2020 Jun; 138(6):680-688. PubMed ID: 32352506 [TBL] [Abstract][Full Text] [Related]
78. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes. Salz DA; de Carlo TE; Adhi M; Moult E; Choi W; Baumal CR; Witkin AJ; Duker JS; Fujimoto JG; Waheed NK JAMA Ophthalmol; 2016 Jun; 134(6):644-50. PubMed ID: 27055248 [TBL] [Abstract][Full Text] [Related]
79. Longitudinal changes in retinal microvasculature after panretinal photocoagulation in diabetic retinopathy using swept-source OCT angiography. Kim K; Kim ES; Yu SY Sci Rep; 2021 Jan; 11(1):216. PubMed ID: 33420291 [TBL] [Abstract][Full Text] [Related]
80. Diabetic Retinopathy Severity and Peripheral Lesions Are Associated with Nonperfusion on Ultrawide Field Angiography. Silva PS; Dela Cruz AJ; Ledesma MG; van Hemert J; Radwan A; Cavallerano JD; Aiello LM; Sun JK; Aiello LP Ophthalmology; 2015 Dec; 122(12):2465-72. PubMed ID: 26350546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]