These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 36532066)
21. Tumor-Microenvironment-Activatable Nanoparticle Mediating Immunogene Therapy and M2 Macrophage-Targeted Inhibitor for Synergistic Cancer Immunotherapy. Hu Y; Nie W; Lyu L; Zhang X; Wang W; Zhang Y; He S; Guo A; Liu F; Wang B; Qian Z; Gao X ACS Nano; 2024 Jan; 18(4):3295-3312. PubMed ID: 38252684 [TBL] [Abstract][Full Text] [Related]
22. Ovarian cancer treatment and natural killer cell-based immunotherapy. Fan Z; Han D; Fan X; Zhao L Front Immunol; 2023; 14():1308143. PubMed ID: 38187402 [TBL] [Abstract][Full Text] [Related]
23. Role of TIM-3 in ovarian cancer: the forsaken cop or a new noble. Chang X; Miao J Front Immunol; 2024; 15():1407403. PubMed ID: 39206199 [TBL] [Abstract][Full Text] [Related]
24. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Yang M; Li J; Gu P; Fan X Bioact Mater; 2021 Jul; 6(7):1973-1987. PubMed ID: 33426371 [TBL] [Abstract][Full Text] [Related]
25. Nanotherapeutics for immune network modulation in tumor microenvironments. Lee J; Kim D; Le QV; Oh YK Semin Cancer Biol; 2022 Nov; 86(Pt 3):1066-1087. PubMed ID: 34844846 [TBL] [Abstract][Full Text] [Related]
26. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. Lu Q; Kou D; Lou S; Ashrafizadeh M; Aref AR; Canadas I; Tian Y; Niu X; Wang Y; Torabian P; Wang L; Sethi G; Tergaonkar V; Tay F; Yuan Z; Han P J Hematol Oncol; 2024 Apr; 17(1):16. PubMed ID: 38566199 [TBL] [Abstract][Full Text] [Related]
27. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Hu S; Ma J; Su C; Chen Y; Shu Y; Qi Z; Zhang B; Shi G; Zhang Y; Zhang Y; Huang A; Kuang Y; Cheng P Acta Biomater; 2021 Nov; 135():567-581. PubMed ID: 34506976 [TBL] [Abstract][Full Text] [Related]
28. Photoacoustic mediated multifunctional tumor antigen trapping nanoparticles inhibit the recurrence and metastasis of ovarian cancer by enhancing tumor immunogenicity. Zhong X; Li C; Zhao G; Li M; Chen S; Cao Y; Wang Q; Sun J; Zhu S; Chang S J Nanobiotechnology; 2022 Nov; 20(1):468. PubMed ID: 36329515 [TBL] [Abstract][Full Text] [Related]
29. Combination Cancer Immunotherapy of Nanoparticle-Based Immunogenic Cell Death Inducers and Immune Checkpoint Inhibitors. Qi J; Jin F; Xu X; Du Y Int J Nanomedicine; 2021; 16():1435-1456. PubMed ID: 33654395 [TBL] [Abstract][Full Text] [Related]
30. Regulatory cells and the effect of cancer immunotherapy. Iglesias-Escudero M; Arias-González N; Martínez-Cáceres E Mol Cancer; 2023 Feb; 22(1):26. PubMed ID: 36739406 [TBL] [Abstract][Full Text] [Related]
31. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Hsu CY; Mustafa MA; Kumar A; Pramanik A; Sharma R; Mohammed F; Jawad IA; Mohammed IJ; Alshahrani MY; Ali Khalil NAM; Shnishil AT; Abosaoda MK Pathol Res Pract; 2024 Apr; 256():155266. PubMed ID: 38554489 [TBL] [Abstract][Full Text] [Related]
32. Binary Cooperative Prodrug Nanoparticles Improve Immunotherapy by Synergistically Modulating Immune Tumor Microenvironment. Feng B; Zhou F; Hou B; Wang D; Wang T; Fu Y; Ma Y; Yu H; Li Y Adv Mater; 2018 Sep; 30(38):e1803001. PubMed ID: 30063262 [TBL] [Abstract][Full Text] [Related]
33. M2-Like TAMs Function Reversal Contributes to Breast Cancer Eradication by Combination Dual Immune Checkpoint Blockade and Photothermal Therapy. Zhao W; Hu X; Li W; Li R; Chen J; Zhou L; Qiang S; Wu W; Shi S; Dong C Small; 2021 Apr; 17(13):e2007051. PubMed ID: 33599061 [TBL] [Abstract][Full Text] [Related]
34. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy. Shrimali R; Ahmad S; Berrong Z; Okoev G; Matevosyan A; Razavi GSE; Petit R; Gupta S; Mkrtichyan M; Khleif SN J Immunother Cancer; 2017 Aug; 5(1):64. PubMed ID: 28807056 [TBL] [Abstract][Full Text] [Related]
35. Opportunities in immunotherapy of ovarian cancer. Coukos G; Tanyi J; Kandalaft LE Ann Oncol; 2016 Apr; 27 Suppl 1(Suppl 1):i11-i15. PubMed ID: 27141063 [TBL] [Abstract][Full Text] [Related]
36. Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Saeed M; Gao J; Shi Y; Lammers T; Yu H Theranostics; 2019; 9(26):7981-8000. PubMed ID: 31754376 [TBL] [Abstract][Full Text] [Related]
37. Functional Gadofullerene Nanoparticles Trigger Robust Cancer Immunotherapy Based on Rebuilding an Immunosuppressive Tumor Microenvironment. Li L; Zhen M; Wang H; Sun Z; Jia W; Zhao Z; Zhou C; Liu S; Wang C; Bai C Nano Lett; 2020 Jun; 20(6):4487-4496. PubMed ID: 32407113 [TBL] [Abstract][Full Text] [Related]
38. Ovarian Cancer Immunotherapy: Turning up the Heat. Ghisoni E; Imbimbo M; Zimmermann S; Valabrega G Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208030 [TBL] [Abstract][Full Text] [Related]
39. Signatures of tumor-associated macrophages correlate with treatment response in ovarian cancer patients. Gao Y; Qi Y; Shen Y; Zhang Y; Wang D; Su M; Liu X; Wang A; Zhang W; He C; Yang J; Dai M; Wang H; Cai H Aging (Albany NY); 2024 Jan; 16(1):207-225. PubMed ID: 38175687 [TBL] [Abstract][Full Text] [Related]
40. Emerging role of natural products in cancer immunotherapy. Dong S; Guo X; Han F; He Z; Wang Y Acta Pharm Sin B; 2022 Mar; 12(3):1163-1185. PubMed ID: 35530162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]