These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36532242)

  • 41. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative life cycle analysis of critical materials recovery from spent Li-ion batteries.
    Mousavinezhad S; Kadivar S; Vahidi E
    J Environ Manage; 2023 Aug; 339():117887. PubMed ID: 37031596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lithium-ion battery second life: pathways, challenges and outlook.
    Patel AN; Lander L; Ahuja J; Bulman J; Lum JKH; Pople JOD; Hales A; Patel Y; Edge JS
    Front Chem; 2024; 12():1358417. PubMed ID: 38650673
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward Direct Regeneration of Spent Lithium-Ion Batteries: A Next-Generation Recycling Method.
    Wang J; Ma J; Zhuang Z; Liang Z; Jia K; Ji G; Zhou G; Cheng HM
    Chem Rev; 2024 Mar; 124(5):2839-2887. PubMed ID: 38427022
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles.
    Zhang M; Wang L; Wang S; Ma T; Jia F; Zhan C
    Small Methods; 2023 Jul; 7(7):e2300125. PubMed ID: 37086120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resource recovery and regeneration strategies for spent lithium-ion batteries: Toward sustainable high-value cathode materials.
    Gu K; Tokoro C; Takaya Y; Zhou J; Qin W; Han J
    Waste Manag; 2024 Apr; 179():120-129. PubMed ID: 38471250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry.
    Wang S; Yu J
    Waste Manag Res; 2021 Jun; 39(6):818-827. PubMed ID: 32883186
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective.
    Nie Y; Wang Y; Li L; Liao H
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery.
    Lei S; Sun W; Yang Y
    Environ Sci Technol; 2024 Feb; 58(8):3609-3628. PubMed ID: 38329241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance evaluation of regulatory schemes for retired electric vehicle battery recycling within dual-recycle channels.
    Lin Y; Yu Z; Wang Y; Goh M
    J Environ Manage; 2023 Apr; 332():117354. PubMed ID: 36724597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of Electric Vehicle Lithium-Ion Battery Recycling Allocation Methods.
    Du S; Gao F; Nie Z; Liu Y; Sun B; Gong X
    Environ Sci Technol; 2022 Dec; 56(24):17977-17987. PubMed ID: 36455148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review of new technologies for lithium-ion battery treatment.
    Li Y; Zhao P; Shen B
    Sci Total Environ; 2024 Nov; 951():175459. PubMed ID: 39173759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.
    Nowak S; Winter M
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28272327
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Closed Loop Recycling of Electric Vehicle Batteries to Enable Ultra-high Quality Cathode Powder.
    Chen M; Zheng Z; Wang Q; Zhang Y; Ma X; Shen C; Xu D; Liu J; Liu Y; Gionet P; O'Connor I; Pinnell L; Wang J; Gratz E; Arsenault R; Wang Y
    Sci Rep; 2019 Feb; 9(1):1654. PubMed ID: 30733518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.