These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3653290)

  • 21. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin.
    Sinha D; Esumi N; Jaworski C; Kozak CA; Pierce E; Wistow G
    Mol Vis; 1998 Apr; 4():8. PubMed ID: 9565648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The development of a monoclonal antibody to a human gamma crystallin.
    Russell P; Zigler JS; Reddy V
    Curr Eye Res; 1984 Nov; 3(11):1329-35. PubMed ID: 6510011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes.
    Su SP; Song X; Xavier D; Aquilina JA
    Proteins; 2015 Oct; 83(10):1878-86. PubMed ID: 26238763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nondisulfide polymerization of gamma- and beta-crystallins in the human lens.
    Roy D; Dillon J; Wada E; Chaney W; Spector A
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2878-81. PubMed ID: 6585833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial and temporal mapping of the age-related changes in human lens crystallins.
    McFall-Ngai MJ; Ding LL; Takemoto LJ; Horwitz J
    Exp Eye Res; 1985 Dec; 41(6):745-58. PubMed ID: 3830737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of microdissected sections from the human cataractous lens by antisera to synthetic peptides.
    Takemoto L; Kodama T; Wolfe J; Chylack L
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1210-3. PubMed ID: 3596997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z; David LL; Smith DL; Smith JB
    Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunochemical characterization of the major low molecular weight polypeptide (10K) from human cataractous lenses.
    Takemoto L; Straatsma B; Horwitz J
    Exp Eye Res; 1989 Feb; 48(2):261-70. PubMed ID: 2466675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The comparison of human lens crystallins using three monoclonal antibodies.
    Russell P; Carper DA; Chiogioji A; Reddy V
    Invest Ophthalmol Vis Sci; 1985 Jul; 26(7):1028-31. PubMed ID: 2409050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitation of asparagine-101 deamidation from alpha-A crystallin during aging of the human lens.
    Takemoto LJ
    Curr Eye Res; 1998 Mar; 17(3):247-50. PubMed ID: 9543632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function.
    Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N
    FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related degradation of betaA3/A1-crystallin in human lenses.
    Srivastava OP; Srivastava K; Harrington V
    Biochem Biophys Res Commun; 1999 May; 258(3):632-8. PubMed ID: 10329436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism of crystallin fragments in cell-free extracts of bovine lens: effects of ageing and oxygen free-radicals.
    Hipkiss AR; Carmichael PL; Zimmermann B
    Acta Biol Hung; 1991; 42(1-3):243-63. PubMed ID: 1844313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization of biologically uncommon D-beta-aspartate-containing alphaA-crystallin in human eye lens.
    Fujii N; Shimo-Oka T; Ogiso M; Momose Y; Kodama T; Kodama M; Akaboshi M
    Mol Vis; 2000 Feb; 6():1-5. PubMed ID: 10706893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BetaB2-crystallin undergoes extensive truncation during aging in human lenses.
    Srivastava OP; Srivastava K
    Biochem Biophys Res Commun; 2003 Jan; 301(1):44-9. PubMed ID: 12535638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Studies on human gamma-crystallins. I. Quantitative changes with age and cataract formation].
    Wu K; Li S; Pan S; Liang S; Cao X
    Yan Ke Xue Bao; 1992 Jun; 8(2):68-72. PubMed ID: 1299602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related increase in concentration and aggregation of degraded polypeptides in human lenses.
    Srivastava OP
    Exp Eye Res; 1988 Oct; 47(4):525-43. PubMed ID: 3181333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunochemical detection of glycated lens crystallins and their circulating autoantibodies in human serum during aging.
    Ranjan M; Nayak S; Kosuri T; Rao BS
    Mol Vis; 2008; 14():2056-66. PubMed ID: 19023447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of tryptic peptides from the C-terminal region of alpha-crystallin from cataractous and normal human lenses.
    Takemoto LJ; Emmons T; Granstrom D; Griffin PR; Shabanowitz J; Hunt DF
    Exp Eye Res; 1990 Jun; 50(6):695-702. PubMed ID: 2373163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.