These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36533194)

  • 1. Effects of powered versus passive-elastic ankle foot prostheses on leg muscle activity during level, uphill and downhill walking.
    Colvin ZA; Montgomery JR; Grabowski AM
    R Soc Open Sci; 2022 Dec; 9(12):220651. PubMed ID: 36533194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a powered ankle-foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations.
    Montgomery JR; Grabowski AM
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greater than recommended stiffness and power setting of a stance-phase powered leg prosthesis can improve step-to-step transition work and effective foot length ratio during walking in people with transtibial amputation.
    Tacca JR; Colvin ZA; Grabowski AM
    Front Bioeng Biotechnol; 2024; 12():1336520. PubMed ID: 39011154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
    D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of powered ankle prostheses on muscle activity during walking.
    Kim J; Gardinier ES; Vempala V; Gates DH
    J Biomech; 2021 Jul; 124():110573. PubMed ID: 34153660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Functional Roles of Muscles, Passive Prostheses, and Powered Prostheses During Sloped Walking in People With a Transtibial Amputation.
    Pickle NT; Grabowski AM; Jeffers JR; Silverman AK
    J Biomech Eng; 2017 Nov; 139(11):1110051-11100511. PubMed ID: 28975280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does age affect leg muscle activity/coactivity during uphill and downhill walking?
    Franz JR; Kram R
    Gait Posture; 2013 Mar; 37(3):378-84. PubMed ID: 22940542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-body angular momentum during sloped walking using passive and powered lower-limb prostheses.
    Pickle NT; Wilken JM; Aldridge Whitehead JM; Silverman AK
    J Biomech; 2016 Oct; 49(14):3397-3406. PubMed ID: 27670646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Running-specific prostheses reduce lower-limb muscle activity compared to daily-use prostheses in people with unilateral transtibial amputations.
    Sepp LA; Nelson-Wong E; Baum BS; Silverman AK
    J Electromyogr Kinesiol; 2020 Dec; 55():102462. PubMed ID: 33091790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses.
    Russell Esposito E; Aldridge Whitehead JM; Wilken JM
    Prosthet Orthot Int; 2016 Jun; 40(3):311-9. PubMed ID: 25628378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing a passive-elastic and a powered prosthesis in transtibial amputees.
    Mancinelli C; Patritti BL; Tropea P; Greenwald RM; Casler R; Herr H; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8255-8. PubMed ID: 22256259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of uphill/downhill running on a level treadmill using additional horizontal force.
    Gimenez P; Arnal PJ; Samozino P; Millet GY; Morin JB
    J Biomech; 2014 Jul; 47(10):2517-21. PubMed ID: 24811045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation.
    Herr HM; Grabowski AM
    Proc Biol Sci; 2012 Feb; 279(1728):457-64. PubMed ID: 21752817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmental contributions to sagittal-plane whole-body angular momentum when using powered compared to passive ankle-foot prostheses on ramps.
    Pickle NT; Silverman AK; Wilken JM; Fey NP
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1609-1614. PubMed ID: 28814050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contributions of ankle, knee and hip joint work to individual leg work change during uphill and downhill walking over a range of speeds.
    Montgomery JR; Grabowski AM
    R Soc Open Sci; 2018 Aug; 5(8):180550. PubMed ID: 30225047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steep (30°) uphill walking vs. running: COM movements, stride kinematics, and leg muscle excitations.
    Whiting CS; Allen SP; Brill JW; Kram R
    Eur J Appl Physiol; 2020 Oct; 120(10):2147-2157. PubMed ID: 32705391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces.
    Nickel E; Sensinger J; Hansen A
    J Rehabil Res Dev; 2014; 51(5):803-14. PubMed ID: 25333672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.