BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36533311)

  • 21. The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s.
    Easton DP; Kaneko Y; Subjeck JR
    Cell Stress Chaperones; 2000 Oct; 5(4):276-90. PubMed ID: 11048651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ.
    Suh WC; Lu CZ; Gross CA
    J Biol Chem; 1999 Oct; 274(43):30534-9. PubMed ID: 10521435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains.
    Davis JE; Voisine C; Craig EA
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9269-76. PubMed ID: 10430932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members.
    Heinen RC; Diniz-Mendes L; Silva JT; Paschoalin VM
    Braz J Med Biol Res; 2006 Nov; 39(11):1399-408. PubMed ID: 17146552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ydj1 interaction at nucleotide-binding-domain of yeast Ssa1 impacts Hsp90 collaboration and client maturation.
    Gaur D; Kumar N; Ghosh A; Singh P; Kumar P; Guleria J; Kaur S; Malik N; Saha S; Nystrom T; Sharma D
    PLoS Genet; 2022 Nov; 18(11):e1010442. PubMed ID: 36350833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An unexpected second binding site for polypeptide substrates is essential for Hsp70 chaperone activity.
    Li H; Zhu H; Sarbeng EB; Liu Q; Tian X; Yang Y; Lyons C; Zhou L; Liu Q
    J Biol Chem; 2020 Jan; 295(2):584-596. PubMed ID: 31806707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV; Patchen B; Peterson KM; Witt SN
    Biochemistry; 2003 May; 42(19):5867-76. PubMed ID: 12741845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication.
    Buchberger A; Gässler CS; Büttner M; McMacken R; Bukau B
    J Biol Chem; 1999 Dec; 274(53):38017-26. PubMed ID: 10608870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain Coupling, and Specific Chaperone Functions.
    Needham PG; Patel HJ; Chiosis G; Thibodeau PH; Brodsky JL
    J Mol Biol; 2015 Sep; 427(18):2948-65. PubMed ID: 25913688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation.
    Vickery LE; Cupp-Vickery JR
    Crit Rev Biochem Mol Biol; 2007; 42(2):95-111. PubMed ID: 17453917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate.
    Bertelsen EB; Chang L; Gestwicki JE; Zuiderweg ER
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8471-6. PubMed ID: 19439666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants.
    Buczynski G; Slepenkov SV; Sehorn MG; Witt SN
    J Biol Chem; 2001 Jul; 276(29):27231-6. PubMed ID: 11352903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of the chaperone DnaK allosterism by the nucleotide exchange factor GrpE.
    Melero R; Moro F; Pérez-Calvo MÁ; Perales-Calvo J; Quintana-Gallardo L; Llorca O; Muga A; Valpuesta JM
    J Biol Chem; 2015 Apr; 290(16):10083-92. PubMed ID: 25739641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK.
    Tomoyasu T; Tsuruno K; Tanatsugu R; Miyazaki A; Kondo H; Tabata A; Whiley RA; Sonomoto K; Nagamune H
    Microbiol Immunol; 2018 Nov; 62(11):681-693. PubMed ID: 30239035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies.
    Liebscher M; Roujeinikova A
    J Bacteriol; 2009 Mar; 191(5):1456-62. PubMed ID: 19103929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible Redox-Dependent Conformational Switch of the C-Terminal α-Helical Lid of Human Hsp70 Observed by In-Cell NMR.
    Liang Q; Zhang Y; Zhang H; Wu S; Gong W; Perrett S
    ACS Chem Biol; 2023 Jan; 18(1):176-183. PubMed ID: 36524733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermolecular Interactions between Hsp90 and Hsp70.
    Doyle SM; Hoskins JR; Kravats AN; Heffner AL; Garikapati S; Wickner S
    J Mol Biol; 2019 Jul; 431(15):2729-2746. PubMed ID: 31125567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multistep mechanism of substrate binding determines chaperone activity of Hsp70.
    Mayer MP; Schröder H; Rüdiger S; Paal K; Laufen T; Bukau B
    Nat Struct Biol; 2000 Jul; 7(7):586-93. PubMed ID: 10876246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of the coordinated motion of Hsp70s from different organelles observed by single-molecule three-color FRET.
    Voith von Voithenberg L; Barth A; Trauschke V; Demarco B; Tyagi S; Koehler C; Lemke EA; Lamb DC
    Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34389669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain.
    Moro F; Taneva SG; Velázquez-Campoy A; Muga A
    J Mol Biol; 2007 Dec; 374(4):1054-64. PubMed ID: 17976642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.