BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36533378)

  • 1. Trace Explosive Detection Based on Photonic Crystal Amplified Fluorescence.
    Chen X; Zhang X; Wang H; Zhang L; Zhu J
    Chemistry; 2023 Mar; 29(17):e202203605. PubMed ID: 36533378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.
    Idros N; Ho MY; Pivnenko M; Qasim MM; Xu H; Gu Z; Chu D
    Sensors (Basel); 2015 Jun; 15(6):12891-905. PubMed ID: 26046595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT-amine complex.
    Qi W; Xu M; Pang L; Liu Z; Zhang W; Majeed S; Xu G
    Chemistry; 2014 Apr; 20(16):4829-35. PubMed ID: 24596312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles.
    Arshad A; Wang H; Bai X; Jiang R; Xu S; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():16-22. PubMed ID: 30077892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple, Rapid and Low-cost 3-Aminopropyltriethoxysilane (APTES)-based Surface Plasmon Resonance Sensor for TNT Explosive Detection.
    Wang J
    Anal Sci; 2021 Jul; 37(7):1029-1032. PubMed ID: 33191367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule.
    Lin D; Dong R; Li P; Li S; Ge M; Zhang Y; Yang L; Xu W
    Talanta; 2020 Oct; 218():121157. PubMed ID: 32797911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of l-cysteine-capped CdTe quantum dots based ratiometric fluorescence nanosensor for onsite visual determination of trace TNT explosive.
    Qian J; Hua M; Wang C; Wang K; Liu Q; Hao N; Wang K
    Anal Chim Acta; 2016 Nov; 946():80-87. PubMed ID: 27823672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene.
    Chen Y; Chen Z; He Y; Lin H; Sheng P; Liu C; Luo S; Cai Q
    Nanotechnology; 2010 Mar; 21(12):125502. PubMed ID: 20203361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically modified mesoporous wood: a versatile sensor for visual colorimetric detection of trinitrotoluene in water, air, and soil by smartphone camera.
    Zhang Y; Cai Y; Dong F; Bian L; Li H; Wang J; Du J; Qi X; He Y
    Anal Bioanal Chem; 2019 Dec; 411(30):8063-8071. PubMed ID: 31768592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared-light mediated ratiometric luminescent sensor for multimode visualized assays of explosives.
    Hu X; Wei T; Wang J; Liu ZE; Li X; Zhang B; Li Z; Li L; Yuan Q
    Anal Chem; 2014 Oct; 86(20):10484-91. PubMed ID: 25244607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From children's toy to versatile sensor: One-step doping of Play-Doh with primary amino group for explosive detection both on surfaces and in solution.
    Yang S; Fan W; Cheng H; Gong Z; Wang D; Fan M; Huang B
    Anal Chim Acta; 2020 Sep; 1128():193-202. PubMed ID: 32825903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT.
    Gao D; Wang Z; Liu B; Ni L; Wu M; Zhang Z
    Anal Chem; 2008 Nov; 80(22):8545-53. PubMed ID: 18847285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent Sensing Assay for Trinitrotoluene Using Fluorescein Isothiocyanate Conjugated Mesoporous MCM-41 Particles.
    Devi S; Kaur R; Singh B; Paul AK; Tyagi S
    J Nanosci Nanotechnol; 2018 Oct; 18(10):6838-6849. PubMed ID: 29954501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective fluorescence response and magnetic separation probe for 2,4,6-trinitrotoluene based on iron oxide magnetic nanoparticles.
    Zou WS; Wang YQ; Wang F; Shao Q; Zhang J; Liu J
    Anal Bioanal Chem; 2013 May; 405(14):4905-12. PubMed ID: 23503748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl.
    Ular N; Üzer A; Durmazel S; Erçağ E; Apak R
    ACS Sens; 2018 Nov; 3(11):2335-2342. PubMed ID: 30350589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive and selective impedimetric determination of TNT using RSM-CCD optimization.
    Soltani-Shahrivar M; Afkhami A; Madrakian T; Jalal NR
    Talanta; 2023 May; 257():124381. PubMed ID: 36801757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution.
    Wang YQ; Zou WS
    Talanta; 2011 Jul; 85(1):469-75. PubMed ID: 21645727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEISENHEIMER COMPLEX BETWEEN 2,4,6-TRINITROTOLUENE AND 3-AMINOPROPYLTRIETHOXYSILANE AND ITS USE FOR A PAPER-BASED SENSOR.
    Hughes S; Dasary SS; Begum S; Williams N; Yu H
    Sens Biosensing Res; 2015 Sep; 5():37-41. PubMed ID: 26380171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethyleneimine-protected silver cluster for label-free and highly selective detection of 2,4,6-trinitrotoluene.
    Li Q; Guo YM; Gao Y; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121224. PubMed ID: 35397448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protamine gold nanoclusters - based fluorescence turn-on sensor for rapid determination of Trinitrotoluene (TNT).
    Bener M; Burak Şen F; Apak R
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121462. PubMed ID: 35687992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.