These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36533555)

  • 1. Self-healing cyclic peptide hydrogels.
    Bayón-Fernández A; Méndez-Ardoy A; Alvarez-Lorenzo C; Granja JR; Montenegro J
    J Mater Chem B; 2023 Jan; 11(3):606-617. PubMed ID: 36533555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel and Organogel Formation by Hierarchical Self-Assembly of Cyclic Peptides Nanotubes.
    Shaikh H; Rho JY; Macdougall LJ; Gurnani P; Lunn AM; Yang J; Huband S; Mansfield EDH; Peltier R; Perrier S
    Chemistry; 2018 Dec; 24(71):19066-19074. PubMed ID: 30338575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular design of peptide amphiphiles for controlled self-assembly and drug release.
    Liu Z; Tang X; Feng F; Xu J; Wu C; Dai G; Yue W; Zhong W; Xu K
    J Mater Chem B; 2021 Apr; 9(15):3326-3334. PubMed ID: 33881438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel-Stiffening and Non-Cell Adhesive Properties of Amphiphilic Peptides with Central Alkylene Chains.
    Yaguchi A; Hiramatsu H; Ishida A; Oshikawa M; Ajioka I; Muraoka T
    Chemistry; 2021 Jun; 27(36):9295-9301. PubMed ID: 33871881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Linked Self-Assembling Peptides and Their Post-Assembly Functionalization via One-Pot and In Situ Gelation System.
    Pugliese R; Gelain F
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence Decoding of 1D to 2D Self-Assembling Cyclic Peptides.
    Díaz S; Insua I; Bhak G; Montenegro J
    Chemistry; 2020 Nov; 26(64):14765-14770. PubMed ID: 32840910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isomeric control of the mechanical properties of supramolecular filament hydrogels.
    Lin YA; Kang M; Chen WC; Ou YC; Cheetham AG; Wu PH; Wirtz D; Loverde SM; Cui H
    Biomater Sci; 2017 Dec; 6(1):216-224. PubMed ID: 29214247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues.
    Godbe JM; Freeman R; Lewis JA; Sasselli IR; Sangji MH; Stupp SI
    Acta Biomater; 2021 Nov; 135():87-99. PubMed ID: 34481055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of amphiphilic Janus dendrimers into mechanically robust supramolecular hydrogels for sustained drug release.
    Nummelin S; Liljeström V; Saarikoski E; Ropponen J; Nykänen A; Linko V; Seppälä J; Hirvonen J; Ikkala O; Bimbo LM; Kostiainen MA
    Chemistry; 2015 Oct; 21(41):14433-9. PubMed ID: 26134175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-targeted self-assembling cyclic peptide nanotubes.
    Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR
    Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine Substitution Effects on the Supramolecular Morphology and Rigidity of Cell-Adhesive Amphiphilic Peptides.
    Ishida A; Watanabe G; Oshikawa M; Ajioka I; Muraoka T
    Chemistry; 2019 Oct; 25(59):13523-13530. PubMed ID: 31283853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pristine carbon-nanotube-included supramolecular hydrogels with tunable viscoelastic properties.
    Mandal SK; Kar T; Das PK
    Chemistry; 2013 Sep; 19(37):12486-96. PubMed ID: 23881597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology.
    Gao J; Tang C; Elsawy MA; Smith AM; Miller AF; Saiani A
    Biomacromolecules; 2017 Mar; 18(3):826-834. PubMed ID: 28068466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The self-assembly of cystine-bridged γ-peptide-based cyclic peptide-dendron hybrids.
    Lin Z; Li L; Yang Y; Zhan H; Hu Y; Zhou Z; Zhu J; Wang Q; Deng J
    Org Biomol Chem; 2013 Dec; 11(48):8443-51. PubMed ID: 24202293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide Nanomaterials for Drug Delivery Applications.
    Pentlavalli S; Coulter S; Laverty G
    Curr Protein Pept Sci; 2020; 21(4):401-412. PubMed ID: 31893991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft nanotube hydrogels functioning as artificial chaperones.
    Kameta N; Masuda M; Shimizu T
    ACS Nano; 2012 Jun; 6(6):5249-58. PubMed ID: 22616914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Peptide-Based Supramolecular Hydrogel for Controlled Delivery of Amine Drugs.
    Wang Y; Zhang Y; Li X; Li C; Yang Z; Wang L
    Chem Asian J; 2018 Nov; 13(22):3460-3463. PubMed ID: 29882291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dramatic specific-ion effect in supramolecular hydrogels.
    Roy S; Javid N; Frederix PW; Lamprou DA; Urquhart AJ; Hunt NT; Halling PJ; Ulijn RV
    Chemistry; 2012 Sep; 18(37):11723-31. PubMed ID: 22888053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary Self-Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells.
    Brendel JC; Sanchis J; Catrouillet S; Czuba E; Chen MZ; Long BM; Nowell C; Johnston A; Jolliffe KA; Perrier S
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16678-16682. PubMed ID: 30383920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.