BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36533583)

  • 1. Translational control by maternal Nanog promotes oogenesis and early embryonic development.
    He M; Jiao S; Zhang R; Ye D; Wang H; Sun Y
    Development; 2022 Dec; 149(24):. PubMed ID: 36533583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish.
    Miao L; Yuan Y; Cheng F; Fang J; Zhou F; Ma W; Jiang Y; Huang X; Wang Y; Shan L; Chen D; Zhang J
    Development; 2017 Jan; 144(1):128-138. PubMed ID: 27913641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors.
    He M; Zhang R; Jiao S; Zhang F; Ye D; Wang H; Sun Y
    PLoS Biol; 2020 Jul; 18(7):e3000561. PubMed ID: 32702011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation.
    Sun J; Yan L; Shen W; Meng A
    Development; 2018 Oct; 145(19):. PubMed ID: 30135188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression of CPEB proteins is sequentially regulated during zebrafish oogenesis and embryogenesis.
    O'Connell ML; Cavallo WC; Firnberg M
    Mol Reprod Dev; 2014 Apr; 81(4):376-87. PubMed ID: 24474627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular mechanisms underpinning maternal mRNA dormancy.
    Lorenzo-Orts L; Pauli A
    Biochem Soc Trans; 2024 Apr; 52(2):861-871. PubMed ID: 38477334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Translational Control of Maternal mRNAs in Zebrafish.
    Winata CL; Łapiński M; Ismail H; Mathavan S; Sampath P
    Methods Mol Biol; 2021; 2218():367-380. PubMed ID: 33606246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oocyte-specific maternal Slbp2 is required for replication-dependent histone storage and early nuclear cleavage in zebrafish oogenesis and embryogenesis.
    He WX; Wu M; Liu Z; Li Z; Wang Y; Zhou J; Yu P; Zhang XJ; Zhou L; Gui JF
    RNA; 2018 Dec; 24(12):1738-1748. PubMed ID: 30185624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockdown of zebrafish Nanog increases primordial germ cells during early embryonic development.
    Wang H; Liu Y; Ye D; Li J; Liu J; Deng F
    Dev Growth Differ; 2016 May; 58(4):355-66. PubMed ID: 27125179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Igf2bp3 maintains maternal RNA stability and ensures early embryo development in zebrafish.
    Ren F; Lin Q; Gong G; Du X; Dan H; Qin W; Miao R; Xiong Y; Xiao R; Li X; Gui JF; Mei J
    Commun Biol; 2020 Mar; 3(1):94. PubMed ID: 32127635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis.
    Lublin AL; Evans TC
    Dev Biol; 2007 Mar; 303(2):635-49. PubMed ID: 17234175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes.
    Kotani T; Maehata K; Takei N
    Results Probl Cell Differ; 2017; 63():297-324. PubMed ID: 28779323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation and translation of maternal mRNA for embryogenesis.
    Yang G; Xin Q; Dean J
    Trends Genet; 2024 Mar; 40(3):238-249. PubMed ID: 38262796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption.
    Luong XG; Daldello EM; Rajkovic G; Yang CR; Conti M
    Nucleic Acids Res; 2020 Apr; 48(6):3257-3276. PubMed ID: 31970406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB).
    Esencan E; Kallen A; Zhang M; Seli E
    Biol Reprod; 2019 May; 100(5):1147-1157. PubMed ID: 30806655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posttranscriptional regulation of maternal Pou5f1/Oct4 during mouse oogenesis and early embryogenesis.
    Takada Y; Iyyappan R; Susor A; Kotani T
    Histochem Cell Biol; 2020 Dec; 154(6):609-620. PubMed ID: 32930837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nile tilapia (Oreochromis niloticus) Nanog co-expression with Pou5f3, transcriptional regulation and biological activity in embyonic development and embryonic cells.
    Bai X; Jianeng L; Zhang Z; Qu X; Tao W; Zhou L; Wang D; Wei J
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 264():110812. PubMed ID: 36396033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2.
    Yamamoto TM; Cook JM; Kotter CV; Khat T; Silva KD; Ferreyros M; Holt JW; Knight JD; Charlesworth A
    Biochim Biophys Acta; 2013 Oct; 1829(10):1034-46. PubMed ID: 23827238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The translational regulation of maternal mRNAs in time and space.
    Winata CL; Korzh V
    FEBS Lett; 2018 Sep; 592(17):3007-3023. PubMed ID: 29972882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bruno negatively regulates germ cell-less expression in a BRE-independent manner.
    Moore J; Han H; Lasko P
    Mech Dev; 2009 Jul; 126(7):503-16. PubMed ID: 19393317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.