These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36533714)

  • 1. Evaluation of the visual-manual resources required to perform calling and navigation tasks in conventional mode with a portable phone and in full- touch mode with an embedded system.
    Fu R; Zhao X; Li Z; Zhao C; Wang C
    Ergonomics; 2023 Oct; 66(10):1633-1651. PubMed ID: 36533714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data.
    Xiong H; Bao S; Sayer J; Kato K
    J Safety Res; 2015 Sep; 54():89-93. PubMed ID: 26403907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual and cognitive demands of manual and voice-based driving mode implementations on smartphones.
    Monk C; Sall R; Lester BD; Stephen Higgins J
    Accid Anal Prev; 2023 Jul; 187():107033. PubMed ID: 37099998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drivers' self-regulatory behaviors in active and responsive scenarios.
    Zhang Y; Zhou R; Shi Y
    Traffic Inj Prev; 2023; 24(3):262-270. PubMed ID: 36853398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining drivers' eye glance patterns during distracted driving: Insights from scanning randomness and glance transition matrix.
    Wang Y; Bao S; Du W; Ye Z; Sayer JR
    J Safety Res; 2017 Dec; 63():149-155. PubMed ID: 29203013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.
    Oviedo-Trespalacios O; Haque MM; King M; Washington S
    Accid Anal Prev; 2017 Apr; 101():67-77. PubMed ID: 28189943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of driver cell phone use and their influence on driving performance: A naturalistic driving study.
    Wang X; Xu R; Asmelash A; Xing Y; Lee C
    Accid Anal Prev; 2020 Dec; 148():105845. PubMed ID: 33120181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable System for Monitoring and Controlling Driver Behavior and the Use of a Mobile Phone While Driving.
    Khandakar A; Chowdhury MEH; Ahmed R; Dhib A; Mohammed M; Al-Emadi NAMA; Michelson D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driving context influences drivers' decision to engage in visual-manual phone tasks: Evidence from a naturalistic driving study.
    Tivesten E; Dozza M
    J Safety Res; 2015 Jun; 53():87-96. PubMed ID: 25934001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of driver engagement in secondary tasks from observed naturalistic driving behavior.
    Ye M; Osman OA; Ishak S; Hashemi B
    Accid Anal Prev; 2017 Sep; 106():385-391. PubMed ID: 28719829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distracted Driving, Visual Inattention, and Crash Risk Among Teenage Drivers.
    Gershon P; Sita KR; Zhu C; Ehsani JP; Klauer SG; Dingus TA; Simons-Morton BG
    Am J Prev Med; 2019 Apr; 56(4):494-500. PubMed ID: 30799162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-modal assessment of on-road demand of voice and manual phone calling and voice navigation entry across two embedded vehicle systems.
    Mehler B; Kidd D; Reimer B; Reagan I; Dobres J; McCartt A
    Ergonomics; 2016 Mar; 59(3):344-67. PubMed ID: 26269281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do the type and duration of distraction affect speed selection and crash risk? An evaluation using naturalistic driving data.
    Bamney A; Sonduru Pantangi S; Jashami H; Savolainen P
    Accid Anal Prev; 2022 Dec; 178():106854. PubMed ID: 36252466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driver distraction and in-vehicle interventions: A driving simulator study on visual attention and driving performance.
    Ezzati Amini R; Al Haddad C; Batabyal D; Gkena I; De Vos B; Cuenen A; Brijs T; Antoniou C
    Accid Anal Prev; 2023 Oct; 191():107195. PubMed ID: 37441985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using naturalistic driving study data to investigate the impact of driver distraction on driver's brake reaction time in freeway rear-end events in car-following situation.
    Gao J; Davis GA
    J Safety Res; 2017 Dec; 63():195-204. PubMed ID: 29203019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mental workload accumulation effect of mobile phone distraction in L2 autopilot mode.
    Zhao H; Ma J; Zhang Y; Chang R
    Sci Rep; 2022 Oct; 12(1):16856. PubMed ID: 36207431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driver distraction by smartphone use (WhatsApp) in different age groups.
    Ortiz C; Ortiz-Peregrina S; Castro JJ; Casares-López M; Salas C
    Accid Anal Prev; 2018 Aug; 117():239-249. PubMed ID: 29723735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Talking on the Phone While Driving: A Literature Review on Driving Simulator Studies.
    Boboc RG; Voinea GD; Buzdugan ID; Antonya C
    Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usability testing of three visual HMIs for assisted driving: How design impacts driver distraction and mental models.
    Perrier MJR; Louw TL; Carsten OMJ
    Ergonomics; 2023 Aug; 66(8):1142-1163. PubMed ID: 36259259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.