These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 36533832)
1. Atomic Force Microscopy Cantilever-Based Nanoindentation: Mechanical Property Measurements at the Nanoscale in Air and Fluid. Enrriques AE; Howard S; Timsina R; Khadka NK; Hoover AN; Ray AE; Ding L; Onwumelu C; Nordeng S; Mainali L; Uzer G; Davis PH J Vis Exp; 2022 Dec; (190):. PubMed ID: 36533832 [TBL] [Abstract][Full Text] [Related]
2. Quantitative mapping of high modulus materials at the nanoscale: comparative study between atomic force microscopy and nanoindentation. Coq Germanicus R; Mercier D; Agrebi F; FÈbvre M; Mariolle D; Descamps P; LeclÈre P J Microsc; 2020 Jun; ():. PubMed ID: 32515496 [TBL] [Abstract][Full Text] [Related]
3. Calibration of colloidal probes with atomic force microscopy for micromechanical assessment. Kain L; Andriotis OG; Gruber P; Frank M; Markovic M; Grech D; Nedelkovski V; Stolz M; Ovsianikov A; Thurner PJ J Mech Behav Biomed Mater; 2018 Sep; 85():225-236. PubMed ID: 29933150 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Visualization of the Nanomechanical Young's Modulus of Soft Materials by Atomic Force Microscopy. Kim S; Lee Y; Lee M; An S; Cho SJ Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204454 [TBL] [Abstract][Full Text] [Related]
5. Influence of cantilever tip geometry and contact model on AFM elasticity measurement of cells. Kulkarni SG; Pérez-Domínguez S; Radmacher M J Mol Recognit; 2023 Jul; 36(7):e3018. PubMed ID: 37025035 [TBL] [Abstract][Full Text] [Related]
6. Alteration of Young's modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy. Yen MH; Chen YH; Liu YS; Lee OK Biochem Biophys Res Commun; 2020 Jun; 526(3):827-832. PubMed ID: 32273088 [TBL] [Abstract][Full Text] [Related]
7. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation. Sweers KK; van der Werf KO; Bennink ML; Subramaniam V Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128 [TBL] [Abstract][Full Text] [Related]
8. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements. Vaiani L; Migliorini E; Cavalcanti-Adam EA; Uva AE; Fiorentino M; Gattullo M; Manghisi VM; Boccaccio A Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111860. PubMed ID: 33579492 [TBL] [Abstract][Full Text] [Related]
9. A dynamic model of the jump-to phenomenon during AFM analysis. Bowen J; Cheneler D Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559 [TBL] [Abstract][Full Text] [Related]
10. The Hertzian theory in AFM nanoindentation experiments regarding biological samples: Overcoming limitations in data processing. Kontomaris SV; Malamou A; Stylianou A Micron; 2022 Apr; 155():103228. PubMed ID: 35124406 [TBL] [Abstract][Full Text] [Related]
11. Indenting soft samples (hydrogels and cells) with cantilevers possessing various shapes of probing tip. Zemła J; Bobrowska J; Kubiak A; Zieliński T; Pabijan J; Pogoda K; Bobrowski P; Lekka M Eur Biophys J; 2020 Sep; 49(6):485-495. PubMed ID: 32803311 [TBL] [Abstract][Full Text] [Related]
12. A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy. Tang B; Ngan AH; Pethica JB Nanotechnology; 2008 Dec; 19(49):495713. PubMed ID: 21730693 [TBL] [Abstract][Full Text] [Related]
13. Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation. Andriotis OG; Manuyakorn W; Zekonyte J; Katsamenis OL; Fabri S; Howarth PH; Davies DE; Thurner PJ J Mech Behav Biomed Mater; 2014 Nov; 39():9-26. PubMed ID: 25081997 [TBL] [Abstract][Full Text] [Related]
14. Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation. Clifford CA; Sano N; Doyle P; Seah MP Ultramicroscopy; 2012 Mar; 114():38-45. PubMed ID: 22356787 [TBL] [Abstract][Full Text] [Related]
15. AFM Nanoindentation Experiments on Protein Shells: A Protocol. Guo Y; Roos WH Methods Mol Biol; 2019; 1886():243-257. PubMed ID: 30374872 [TBL] [Abstract][Full Text] [Related]
16. Characterising the mechanical properties of haematopoietic and mesenchymal stem cells using micromanipulation and atomic force microscopy. Du M; Kavanagh D; Kalia N; Zhang Z Med Eng Phys; 2019 Nov; 73():18-29. PubMed ID: 31405755 [TBL] [Abstract][Full Text] [Related]
17. Determination of texture properties of banana fruit cells with an atomic force microscope: A case study on elastic modulus and stiffness. Khodabakhshian R; Naeemi A; Bayati MR J Texture Stud; 2021 Jun; 52(3):389-399. PubMed ID: 33675545 [TBL] [Abstract][Full Text] [Related]
18. Evaluating Young's Modulus of Single Yeast Cells Based on Compression Using an Atomic Force Microscope with a Flat Tip. Chang D; Hirate T; Uehara C; Maruyama H; Uozumi N; Arai F Microsc Microanal; 2021 Apr; 27(2):392-399. PubMed ID: 33446296 [TBL] [Abstract][Full Text] [Related]
19. Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Kurland NE; Drira Z; Yadavalli VK Micron; 2012 Feb; 43(2-3):116-28. PubMed ID: 21890365 [TBL] [Abstract][Full Text] [Related]
20. Effect of tip shape on nanomechanical properties measurements using AFM. Nguyen QD; Chung KH Ultramicroscopy; 2019 Jul; 202():1-9. PubMed ID: 30927610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]