These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36533981)

  • 1. Magnetic Nanoseparation Technology for Efficient Control of Microorganisms and Toxins in Foods: A Review.
    Kang Y; Shi S; Sun H; Dan J; Liang Y; Zhang Q; Su Z; Wang J; Zhang W
    J Agric Food Chem; 2022 Dec; 70(51):16050-16068. PubMed ID: 36533981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging food pathogens and bacterial toxins.
    Bielecki J
    Acta Microbiol Pol; 2003; 52 Suppl():17-22. PubMed ID: 15058810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in magnetic nanoparticles for the separation of foodborne pathogens: Recognition, separation strategy, and application.
    Xiao F; Li W; Xu H
    Compr Rev Food Sci Food Saf; 2022 Sep; 21(5):4478-4504. PubMed ID: 36037285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing and Quantifying the Food-Borne Pathogens and Toxins: From In Vitro to In Vivo.
    Liu JM; Wang ZH; Ma H; Wang S
    J Agric Food Chem; 2018 Feb; 66(5):1061-1066. PubMed ID: 29341609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foodborne pathogens and their toxins.
    Martinović T; Andjelković U; Gajdošik MŠ; Rešetar D; Josić D
    J Proteomics; 2016 Sep; 147():226-235. PubMed ID: 27109345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins.
    Lu X; Ye Y; Zhang Y; Sun X
    Crit Rev Food Sci Nutr; 2021; 61(22):3819-3835. PubMed ID: 32885986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection.
    Wang Z; Cai R; Gao Z; Yuan Y; Yue T
    Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):3802-3824. PubMed ID: 33337037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Prospective molecular methods for sequencing microorganisms in the system of assessment and control of food safety].
    Efimochkina NR; Sheveleva SA
    Vopr Pitan; 2022; 91(1):37-52. PubMed ID: 35298103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of four foodborne pathogens based on magnetic separation multiplex PCR and capillary electrophoresis.
    He S; Huang Y; Ma Y; Yu H; Pang B; Liu X; Yin C; Wang X; Wei Y; Tian Y; Zhao C; Xu K; Wang J; Lv C; Song X; Jin M
    Biotechnol J; 2022 Jan; 17(1):e2100335. PubMed ID: 34599551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens.
    Kumar H; Kuča K; Bhatia SK; Saini K; Kaushal A; Verma R; Bhalla TC; Kumar D
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32244581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens.
    Tao J; Liu W; Ding W; Han R; Shen Q; Xia Y; Zhang Y; Sun W
    J Food Sci; 2020 Mar; 85(3):744-754. PubMed ID: 31999364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review.
    Dester E; Alocilja E
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples.
    Vaisocherová-Lísalová H; Víšová I; Ermini ML; Špringer T; Song XC; Mrázek J; Lamačová J; Scott Lynn N; Šedivák P; Homola J
    Biosens Bioelectron; 2016 Jun; 80():84-90. PubMed ID: 26807521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on rapid detection of food-borne pathogenic bacteria by nucleic acid testing and related technology].
    Cao W; Wang M; Wang X; Liu X
    Wei Sheng Yan Jiu; 2008 Mar; 37(2):245-8. PubMed ID: 18589620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The significance of some potentially pathogenic microorganisms in occurence of food toxicoinfections. Report 2. Assessment of the role of toxigenic strains of Bacillus cereus].
    Efimochkina NR; Batishcheva SIu; Bykova IB; Sheveleva SA
    Vopr Pitan; 2012; 81(3):24-9. PubMed ID: 22888667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection.
    Chen J; Park B
    J Food Prot; 2016 Jun; 79(6):1055-69. PubMed ID: 27296612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization.
    Bonah E; Huang X; Aheto JH; Osae R
    Foodborne Pathog Dis; 2019 Oct; 16(10):712-722. PubMed ID: 31305129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection, characterization, and enumeration of foodborne pathogens.
    Hoorfar J
    APMIS Suppl; 2011 Nov; (133):1-24. PubMed ID: 22250747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Molecular techniques for detection and identification of pathogens in food: advantages and limitations].
    Palomino-Camargo C; González-Muñoz Y
    Rev Peru Med Exp Salud Publica; 2014; 31(3):535-46. PubMed ID: 25418655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products.
    Inbaraj BS; Chen BH
    J Food Drug Anal; 2016 Jan; 24(1):15-28. PubMed ID: 28911398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.