BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3653401)

  • 1. Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function.
    Tobimatsu T; Fujita Y; Fukuda K; Tanaka K; Mori Y; Konno T; Mishina M; Numa S
    FEBS Lett; 1987 Sep; 222(1):56-62. PubMed ID: 3653401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic regions adjacent to the M3 and M4 transmembrane segments influence expression and function of alpha7 nicotinic acetylcholine receptors. A study with single amino acid mutants.
    Castelán F; Mulet J; Aldea M; Sala S; Sala F; Criado M
    J Neurochem; 2007 Jan; 100(2):406-15. PubMed ID: 17076762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan substitutions at lipid-exposed positions of the gamma M3 transmembrane domain increase the macroscopic ionic current response of the Torpedo californica nicotinic acetylcholine receptor.
    Cruz-Martín A; Mercado JL; Rojas LV; McNamee MG; Lasalde-Dominicci JA
    J Membr Biol; 2001 Sep; 183(1):61-70. PubMed ID: 11547353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor.
    Tamamizu S; Guzmán GR; Santiago J; Rojas LV; McNamee MG; Lasalde-Dominicci JA
    Biochemistry; 2000 Apr; 39(16):4666-73. PubMed ID: 10769122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan substitutions at the lipid-exposed transmembrane segment M4 of Torpedo californica acetylcholine receptor govern channel gating.
    Lasalde JA; Tamamizu S; Butler DH; Vibat CR; Hung B; McNamee MG
    Biochemistry; 1996 Nov; 35(45):14139-48. PubMed ID: 8916899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The steroid promegestone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that interacts with the lipid-protein interface.
    Blanton MP; Xie Y; Dangott LJ; Cohen JB
    Mol Pharmacol; 1999 Feb; 55(2):269-78. PubMed ID: 9927618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration in ion channel function of mouse nicotinic acetylcholine receptor by mutations in the M4 transmembrane domain.
    Tamamizu S; Lee Y; Hung B; McNamee MG; Lasalde-Dominicci JA
    J Membr Biol; 1999 Jul; 170(2):157-64. PubMed ID: 10430659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional acetylcholine receptors expressed in Xenopus oocytes after injection of Torpedo beta, gamma, and delta subunit RNAs are a consequence of endogenous oocyte gene expression.
    Buller AL; White MM
    Mol Pharmacol; 1990 Mar; 37(3):423-8. PubMed ID: 1690347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor.
    Imoto K; Konno T; Nakai J; Wang F; Mishina M; Numa S
    FEBS Lett; 1991 Sep; 289(2):193-200. PubMed ID: 1717313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors.
    Mnatsakanyan N; Jansen M
    J Neurochem; 2013 Jun; 125(6):843-54. PubMed ID: 23565737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Torpedo acetylcholine receptor biosynthesis in Xenopus oocytes.
    Buller AL; White MM
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8717-21. PubMed ID: 3186754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol interacts with transmembrane alpha-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: photolabeling studies using [3H]Azicholesterol.
    Hamouda AK; Chiara DC; Sauls D; Cohen JB; Blanton MP
    Biochemistry; 2006 Jan; 45(3):976-86. PubMed ID: 16411773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary structure of gamma subunit precursor of calf-muscle acetylcholine receptor deduced from the cDNA sequence.
    Takai T; Noda M; Furutani Y; Takahashi H; Notake M; Shimizu S; Kayano T; Tanabe T; Tanaka K; Hirose T
    Eur J Biochem; 1984 Aug; 143(1):109-15. PubMed ID: 6547904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor.
    Oiki S; Danho W; Madison V; Montal M
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8703-7. PubMed ID: 2460876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine receptor subunit homomer formation requires compatibility between amino acid residues of the M1 and M2 transmembrane segments.
    Vicente-Agulló F; Rovira JC; Campos-Caro A; Rodríguez-Ferrer C; Ballesta JJ; Sala S; Sala F; Criado M
    FEBS Lett; 1996 Dec; 399(1-2):83-6. PubMed ID: 8980125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel.
    Imoto K; Methfessel C; Sakmann B; Mishina M; Mori Y; Konno T; Fukuda K; Kurasaki M; Bujo H; Fujita Y
    Nature; 1986 Dec 18-31; 324(6098):670-4. PubMed ID: 2432430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profiles.
    Ratnam M; Nguyen DL; Rivier J; Sargent PB; Lindstrom J
    Biochemistry; 1986 May; 25(9):2633-43. PubMed ID: 3718969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in the M4 domain of the Torpedo californica nicotinic acetylcholine receptor alter channel opening and closing.
    Ortiz-Miranda SI; Lasalde JA; Pappone PA; McNamee MG
    J Membr Biol; 1997 Jul; 158(1):17-30. PubMed ID: 9211718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of acetylcholine receptor subunits in gating of the channel.
    Sakmann B; Methfessel C; Mishina M; Takahashi T; Takai T; Kurasaki M; Fukuda K; Numa S
    Nature; 1985 Dec 12-18; 318(6046):538-43. PubMed ID: 2415826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of a key cysteine residue in the gating of the acetylcholine receptor.
    Lo DC; Pinkham JL; Stevens CF
    Neuron; 1991 Jan; 6(1):31-40. PubMed ID: 1986773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.