These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36534206)

  • 41. Detecting the effects of opencast mining on ecosystem services value in arid and semi-arid areas based on time-series remote sensing images and Google Earth Engine (GEE).
    Wu Q; Yang L; Mi J
    BMC Ecol Evol; 2024 Feb; 24(1):28. PubMed ID: 38424478
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impacts of mining on vegetation phenology and sensitivity assessment of spectral vegetation indices to mining activities in arid/semi-arid areas.
    Sun X; Zhou Y; Jia S; Shao H; Liu M; Tao S; Dai X
    J Environ Manage; 2024 Apr; 356():120678. PubMed ID: 38503228
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monitoring and analysis of desertification surrounding Qinghai Lake (China) using remote sensing big data.
    Zhou Y; Hu Z; Geng Q; Ma J; Liu J; Wang M; Wang Y
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17420-17436. PubMed ID: 36194325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of Landsat and Land-Based Phenology Camera Normalized Difference Vegetation Index (NDVI) for Dominant Plant Communities in the Great Basin.
    Snyder KA; Huntington JL; Wehan BL; Morton CG; Stringham TK
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Developing a method for assessing environmental sustainability based on the Google Earth Engine platform.
    Xia X; Jiao C; Song S; Zhang L; Feng X; Huang Q
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57437-57452. PubMed ID: 35349069
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of spontaneous vegetation on reclaimed land in Singapore measured by NDVI.
    Gaw LY; Richards DR
    PLoS One; 2021; 16(1):e0245220. PubMed ID: 33507965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine.
    Hao B; Ma M; Li S; Li Q; Hao D; Huang J; Ge Z; Yang H; Han X
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067808
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating the environmental impacts of coal mining using remote sensing and in situ measurements in Ruqigou Coalfield, China.
    Saini V; Li J; Yang Y; Li J; Wang B; Tan J
    Environ Monit Assess; 2022 Sep; 194(10):780. PubMed ID: 36098888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.
    Karan SK; Samadder SR; Maiti SK
    J Environ Manage; 2016 Nov; 182():272-283. PubMed ID: 27491028
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coarse spatial resolution remote sensing data with AVHRR and MODIS miss the greening area compared with the Landsat data in Chinese drylands.
    Zhang J; Zhang Y; Cong N; Tian L; Zhao G; Zheng Z; Gao J; Zhu Y; Zhang Y
    Front Plant Sci; 2023; 14():1129665. PubMed ID: 37265636
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response of vegetation variation to climate change and human activities in semi-arid swamps.
    Deng G; Gao J; Jiang H; Li D; Wang X; Wen Y; Sheng L; He C
    Front Plant Sci; 2022; 13():990592. PubMed ID: 36237507
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of resource and environmental carrying capacity in rare earth mining areas in China.
    Bai J; Xu X; Duan Y; Zhang G; Wang Z; Wang L; Zheng C
    Sci Rep; 2022 Apr; 12(1):6105. PubMed ID: 35414684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of the disturbance and trajectory types in mining areas using multitemporal remote sensing images.
    Yang Z; Li J; Zipper CE; Shen Y; Miao H; Donovan PF
    Sci Total Environ; 2018 Dec; 644():916-927. PubMed ID: 30743889
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long-term detection and spatiotemporal variation analysis of open-surface water bodies in the Yellow River Basin from 1986 to 2020.
    Zhang Y; Du J; Guo L; Fang S; Zhang J; Sun B; Mao J; Sheng Z; Li L
    Sci Total Environ; 2022 Nov; 845():157152. PubMed ID: 35803420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand.
    Mohanasundaram S; Baghel T; Thakur V; Udmale P; Shrestha S
    Environ Monit Assess; 2022 Dec; 195(1):211. PubMed ID: 36534216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monitoring spatio-temporal changes in wetlands with harmonized image series in Google Earth Engine.
    Gürbüz E
    Environ Monit Assess; 2023 May; 195(6):770. PubMed ID: 37249669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dust distribution in open-pit mines based on monitoring data and fluent simulation.
    Wanjun T; Qingxiang C
    Environ Monit Assess; 2018 Oct; 190(11):632. PubMed ID: 30284664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tempo-Spatial Variation of Vegetation Coverage and Influencing Factors of Large-Scale Mining Areas in Eastern Inner Mongolia, China.
    Fang A; Dong J; Cao Z; Zhang F; Li Y
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31861666
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria.
    Fashae OA; Adagbasa EG; Olusola AO; Obateru RO
    Environ Monit Assess; 2020 Jan; 192(2):109. PubMed ID: 31932977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.