These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36534635)
1. 3D High-Resolution Chemical Characterization of Sputtered Li-Rich NMC811 Thin Films Using TOF-SIMS. Priebe A; Aribia A; Sastre J; Romanyuk YE; Michler J Anal Chem; 2023 Jan; 95(2):1074-1084. PubMed ID: 36534635 [TBL] [Abstract][Full Text] [Related]
2. Ultrafast-Laser Micro-Structuring of LiNi Tran MX; Smyrek P; Park J; Pfleging W; Lee JK Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364674 [TBL] [Abstract][Full Text] [Related]
3. Stable Operation Induced by Plastic Crystal Electrolyte Used in Ni-Rich NMC811 Cathodes for Li-Ion Batteries. Jabeen M; Ren Z; Ishaq M; Yuan S; Bao X; Shu C; Liu X; Liu X; Li L; He YS; Ma ZF; Liao XZ ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37890042 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking the electrochemical parameters of the LiNi Savina AA; Abakumov AM Heliyon; 2023 Dec; 9(12):e21881. PubMed ID: 38076166 [TBL] [Abstract][Full Text] [Related]
5. Effects of cathode loadings and anode protection on the performance of lithium metal batteries. Carballo KV; Wang X; Benamara M; Meng X Nanotechnology; 2023 Dec; 35(7):. PubMed ID: 37972394 [TBL] [Abstract][Full Text] [Related]
6. Direct Observation of Dynamic Lithium Diffusion Behavior in Nickel-Rich, LiNi McClelland I; Booth SG; Anthonisamy NN; Middlemiss LA; Pérez GE; Cussen EJ; Baker PJ; Cussen SA Chem Mater; 2023 Jun; 35(11):4149-4158. PubMed ID: 37332678 [TBL] [Abstract][Full Text] [Related]
7. A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Liang J; Zhu Y; Li X; Luo J; Deng S; Zhao Y; Sun Y; Wu D; Hu Y; Li W; Sham TK; Li R; Gu M; Sun X Nat Commun; 2023 Jan; 14(1):146. PubMed ID: 36627277 [TBL] [Abstract][Full Text] [Related]
8. Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries. Dose WM; Li W; Temprano I; O'Keefe CA; Mehdi BL; De Volder MFL; Grey CP ACS Energy Lett; 2022 Oct; 7(10):3524-3530. PubMed ID: 36277132 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Lithium Quantification in Li Bessette S; Paolella A; Kim C; Zhu W; Hovington P; Gauvin R; Zaghib K Sci Rep; 2018 Dec; 8(1):17575. PubMed ID: 30514866 [TBL] [Abstract][Full Text] [Related]
11. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. Dose WM; Temprano I; Allen JP; Björklund E; O'Keefe CA; Li W; Mehdi BL; Weatherup RS; De Volder MFL; Grey CP ACS Appl Mater Interfaces; 2022 Mar; 14(11):13206-13222. PubMed ID: 35258927 [TBL] [Abstract][Full Text] [Related]
12. High-Resolution Surface Analysis on Aluminum Oxide-Coated Li Dannehl N; Steinmüller SO; Szabó DV; Pein M; Sigel F; Esmezjan L; Hasenkox U; Schwarz B; Indris S; Ehrenberg H ACS Appl Mater Interfaces; 2018 Dec; 10(49):43131-43143. PubMed ID: 30422620 [TBL] [Abstract][Full Text] [Related]
13. Ensemble Design of Electrode-Electrolyte Interfaces: Toward High-Performance Thin-Film All-Solid-State Li-Metal Batteries. Xiao CF; Kim JH; Cho SH; Park YC; Kim MJ; Chung KB; Yoon SG; Jung JW; Kim ID; Kim HS ACS Nano; 2021 Mar; 15(3):4561-4575. PubMed ID: 33629830 [TBL] [Abstract][Full Text] [Related]
14. Probing Depth-Dependent Transition-Metal Redox of Lithium Nickel, Manganese, and Cobalt Oxides in Li-Ion Batteries. Yu Y; Karayaylali P; Giordano L; Corchado-García J; Hwang J; Sokaras D; Maglia F; Jung R; Gittleson FS; Shao-Horn Y ACS Appl Mater Interfaces; 2020 Dec; 12(50):55865-55875. PubMed ID: 33283495 [TBL] [Abstract][Full Text] [Related]
15. Comparison of xenon and gallium sources on the detection and mapping of lithium in Li-containing materials by using ToF-SIMS combined FIB-SEM. Dermenci KB; Tesařová H; Šamořil T; Turan S J Microsc; 2020 Jan; 277(1):42-48. PubMed ID: 31855279 [TBL] [Abstract][Full Text] [Related]
16. Controllable crystalline preferred orientation in Li-Co-Ni-Mn oxide cathode thin films for all-solid-state lithium batteries. Tan G; Wu F; Lu J; Chen R; Li L; Amine K Nanoscale; 2014 Sep; 6(18):10611-22. PubMed ID: 25081246 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS. Op de Beeck J; Labyedh N; Sepúlveda A; Spampinato V; Franquet A; Conard T; Vereecken PM; Vandervorst W; Celano U Beilstein J Nanotechnol; 2018; 9():1623-1628. PubMed ID: 29977696 [TBL] [Abstract][Full Text] [Related]
18. Insights into the Cathode-Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries. Erickson EM; Li W; Dolocan A; Manthiram A ACS Appl Mater Interfaces; 2020 Apr; 12(14):16451-16461. PubMed ID: 32181643 [TBL] [Abstract][Full Text] [Related]
19. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Xu C; Märker K; Lee J; Mahadevegowda A; Reeves PJ; Day SJ; Groh MF; Emge SP; Ducati C; Layla Mehdi B; Tang CC; Grey CP Nat Mater; 2021 Jan; 20(1):84-92. PubMed ID: 32839589 [TBL] [Abstract][Full Text] [Related]
20. Construction of Hierarchical Conductive Networks for LiNi Wei L; Wu H; Liu S; Zhou Y; Guo X Small; 2024 Aug; 20(34):e2312059. PubMed ID: 38600893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]