These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36534811)

  • 1. Heterogeneous stochastic bifurcations explain intrinsic oscillatory patterns in entorhinal cortical stellate cells.
    Mittal D; Narayanan R
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2202962119. PubMed ID: 36534811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitability of entorhinal stellate cells.
    Mittal D; Narayanan R
    J Neurophysiol; 2018 Aug; 120(2):576-600. PubMed ID: 29718802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex.
    White JA; Klink R; Alonso A; Kay AR
    J Neurophysiol; 1998 Jul; 80(1):262-9. PubMed ID: 9658048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study.
    Magistretti J; Alonso A
    J Gen Physiol; 1999 Oct; 114(4):491-509. PubMed ID: 10498669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons.
    Dickson CT; Magistretti J; Shalinsky MH; Fransén E; Hasselmo ME; Alonso A
    J Neurophysiol; 2000 May; 83(5):2562-79. PubMed ID: 10805658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells.
    Boehlen A; Henneberger C; Heinemann U; Erchova I
    J Neurophysiol; 2013 Jan; 109(2):445-63. PubMed ID: 23076110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1997 Apr; 77(4):1813-28. PubMed ID: 9114238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold.
    Erchova I; Kreck G; Heinemann U; Herz AV
    J Physiol; 2004 Oct; 560(Pt 1):89-110. PubMed ID: 15272028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastically gating ion channels enable patterned spike firing through activity-dependent modulation of spike probability.
    Dudman JT; Nolan MF
    PLoS Comput Biol; 2009 Feb; 5(2):e1000290. PubMed ID: 19214199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High conductance sustained single-channel activity responsible for the low-threshold persistent Na(+) current in entorhinal cortex neurons.
    Magistretti J; Ragsdale DS; Alonso A
    J Neurosci; 1999 Sep; 19(17):7334-41. PubMed ID: 10460240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theta resonance and synaptic modulation scale activity patterns in the medial entorhinal cortex stellate cells.
    Katyare N; Sikdar SK
    Ann N Y Acad Sci; 2020 Oct; 1478(1):92-112. PubMed ID: 32794193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dorsal-ventral organization of theta-like activity intrinsic to entorhinal stellate neurons is mediated by differences in stochastic current fluctuations.
    Dodson PD; Pastoll H; Nolan MF
    J Physiol; 2011 Jun; 589(Pt 12):2993-3008. PubMed ID: 21502290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons.
    Dorval AD; White JA
    J Neurosci; 2005 Oct; 25(43):10025-8. PubMed ID: 16251451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.
    Kispersky T; White JA; Rotstein HG
    PLoS One; 2010 Nov; 5(11):e13697. PubMed ID: 21079802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.
    Alonso A; Klink R
    J Neurophysiol; 1993 Jul; 70(1):128-43. PubMed ID: 8395571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-channel degeneracy and heterogeneities in the emergence of complex spike bursts in CA3 pyramidal neurons.
    Roy R; Narayanan R
    J Physiol; 2023 Aug; 601(15):3297-3328. PubMed ID: 36201674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons.
    Economo MN; Martínez JJ; White JA
    Hippocampus; 2014 Dec; 24(12):1493-505. PubMed ID: 25044927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.
    Yoshida M; Giocomo LM; Boardman I; Hasselmo ME
    J Neurosci; 2011 Aug; 31(35):12683-94. PubMed ID: 21880929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disparate forms of heterogeneities and interactions among them drive channel decorrelation in the dentate gyrus: Degeneracy and dominance.
    Mishra P; Narayanan R
    Hippocampus; 2019 Apr; 29(4):378-403. PubMed ID: 30260063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane resonance and stochastic resonance modulate firing patterns of thalamocortical neurons.
    Reinker S; Puil E; Miura RM
    J Comput Neurosci; 2004; 16(1):15-25. PubMed ID: 14707541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.