These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36534833)

  • 1. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design.
    Zhang L; Liu H; Du Q; Zhang G; Zhu S; Wu Z; Luo X
    Small; 2023 Mar; 19(10):e2206623. PubMed ID: 36534833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid and Photoliquefiable Azobenzene Derivatives for Solvent-free Molecular Solar Thermal Fuels.
    Yang Y; Huang S; Ma Y; Yi J; Jiang Y; Chang X; Li Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35623-35634. PubMed ID: 35916069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible-Light-Sensitive Photoliquefiable Arylazoisoxazoles for the Solar Energy Conversion, Storage and Controlled-Release of Heat at Room Temperature or Lower Temperatures.
    Dolai A; Bhunia S; Manna K; Bera S; Box SM; Bhattacharya K; Saha R; Sarkar S; Samanta S
    ChemSusChem; 2024 Jun; 17(12):e202301700. PubMed ID: 38329884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Solid-State Photochemical Energy Storage in Polymers with Azobenzene Side Groups.
    Wallace C; Griffiths K; Dale BL; Roberts S; Parsons J; Griffin JM; Görtz V
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31787-31794. PubMed ID: 37350514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoliquefiable ionic crystals: a phase crossover approach for photon energy storage materials with functional multiplicity.
    Ishiba K; Morikawa MA; Chikara C; Yamada T; Iwase K; Kawakita M; Kimizuka N
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1532-6. PubMed ID: 25483773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for Energetic Molecular Solar Thermal Batteries That Upgrade Thermal Energy.
    Zhang ZY; He Y; Wang Z; Xu J; Xie M; Tao P; Ji D; Moth-Poulsen K; Li T
    J Am Chem Soc; 2020 Jul; 142(28):12256-12264. PubMed ID: 32551567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
    Cho EN; Zhitomirsky D; Han GG; Liu Y; Grossman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8679-8687. PubMed ID: 28234453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
    Song T; Lei H; Cai F; Kang Y; Yu H; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1940-1949. PubMed ID: 34928571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoliquefiable DNA-surfactant ionic crystals: Anhydrous self-healing biomaterials at room temperature.
    Zhang L; Qu Y; Gu J; Tang Z; Wu Z; Luo X
    Acta Biomater; 2021 Jul; 128():143-149. PubMed ID: 33930576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Innovative Azobenzene-Based Photothermal Fabric with Excellent Heat Release Performance for Wearable Thermal Management Device.
    Wu Y; Dong L; Tang S; Liu X; Han Y; Zhang S; Liu K; Feng W
    Small; 2024 Dec; 20(49):e2404310. PubMed ID: 39252649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azobenzene-based solar thermal fuels: design, properties, and applications.
    Dong L; Feng Y; Wang L; Feng W
    Chem Soc Rev; 2018 Oct; 47(19):7339-7368. PubMed ID: 30168543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-Soluble Azobenzene-Based Solar Thermal Fuels with Improved Long-Term Energy Storage and Energy Density.
    Chen H; Yang C; Ren H; Zhang W; Cui X; Tang Q
    ACS Appl Mater Interfaces; 2024 Dec; 16(49):66837-66845. PubMed ID: 37944917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers.
    Wu S; Butt HJ
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900413. PubMed ID: 31737964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage.
    Xu X; Wang G
    Small; 2022 Apr; 18(16):e2107473. PubMed ID: 35132792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.
    Wang Z; Tong Z; Ye Q; Hu H; Nie X; Yan C; Shang W; Song C; Wu J; Wang J; Bao H; Tao P; Deng T
    Nat Commun; 2017 Nov; 8(1):1478. PubMed ID: 29133880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices.
    Baby A; John AM; Balakrishnan SP
    Chemphyschem; 2023 Mar; 24(6):e202200676. PubMed ID: 36445807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.
    Durgun E; Grossman JC
    J Phys Chem Lett; 2013 Mar; 4(6):854-60. PubMed ID: 26291346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications.
    Orrego-Hernández J; Dreos A; Moth-Poulsen K
    Acc Chem Res; 2020 Aug; 53(8):1478-1487. PubMed ID: 32662627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic-Ion Controlled Dynamic Bonds to Co-Harvest Isomerization Energy and Bond Enthalpy for High-Energy Output of Flexible Self-Heated Textile.
    Wang H; Feng Y; Gao J; Fang W; Ge J; Yang X; Zhai F; Yu Y; Feng W
    Adv Sci (Weinh); 2022 Jul; 9(20):e2201657. PubMed ID: 35491498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.