These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36534833)

  • 21. Photoswitches with different numbers of azo chromophores for molecular solar thermal storage.
    Sun S; Liang S; Xu WC; Wang M; Gao J; Zhang Q; Wu S
    Soft Matter; 2022 Nov; 18(46):8840-8849. PubMed ID: 36373235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.
    Kucharski TJ; Ferralis N; Kolpak AM; Zheng JO; Nocera DG; Grossman JC
    Nat Chem; 2014 May; 6(5):441-7. PubMed ID: 24755597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intermolecular London Dispersion Interactions of Azobenzene Switches for Tuning Molecular Solar Thermal Energy Storage Systems.
    Kunz A; Heindl AH; Dreos A; Wang Z; Moth-Poulsen K; Becker J; Wegner HA
    Chempluschem; 2019 Aug; 84(8):1145-1148. PubMed ID: 31943965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-Responsive Solid-Solid Phase Change Materials for Photon and Thermal Energy Storage.
    Li X; Cho S; Han GGD
    ACS Mater Au; 2023 Jan; 3(1):37-42. PubMed ID: 36647455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries.
    Zhitomirsky D; Grossman JC
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26319-26325. PubMed ID: 27611884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible Light-Driven Alkyne-Grafted Ethylene-Bridged Azobenzene Chromophores for Photothermal Utilization.
    Fang W; Feng Y; Gao J; Wang H; Ge J; Yang Q; Feng W
    Molecules; 2022 May; 27(10):. PubMed ID: 35630773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study of the Phase-Change Thermal-Storage Characteristics of a Solar Collector.
    Deng Y; Xu J; Li Y; Zhang Y; Kuang C
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-driven DNA nanomachine with a photoresponsive molecular engine.
    Kamiya Y; Asanuma H
    Acc Chem Res; 2014 Jun; 47(6):1663-72. PubMed ID: 24617966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts.
    Chang C; Wang Z; Fu B; Ji Y
    Sci Rep; 2020 Nov; 10(1):20500. PubMed ID: 33235267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic limits to energy conversion in solar thermal fuels.
    Strubbe DA; Grossman JC
    J Phys Condens Matter; 2019 Jan; 31(3):034002. PubMed ID: 30523877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Oriented External Electric Fields on the Photo and Thermal Isomerization of Azobenzene.
    Kempfer-Robertson EM; Thompson LM
    J Phys Chem A; 2020 May; 124(18):3520-3529. PubMed ID: 32286821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoregulative phase change biomaterials showing thermodynamic and mchanical stabilities.
    Zhang L; Gu J; Luo X; Tang Z; Qu Y; Zhang C; Liu H; Liu J; Xie C; Wu Z
    Nanoscale; 2022 Jan; 14(3):976-983. PubMed ID: 34989736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.
    Luo W; Feng Y; Qin C; Li M; Li S; Cao C; Long P; Liu E; Hu W; Yoshino K; Feng W
    Nanoscale; 2015 Oct; 7(39):16214-21. PubMed ID: 26289389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications.
    Bokare A; Arif J; Erogbogbo F
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taking up the quest for novel molecular solar thermal systems: Pros and cons of storing energy with cubane and cubadiene.
    Merino-Robledillo C; Marazzi M
    Front Chem; 2023; 11():1171848. PubMed ID: 37123877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper Sulfide Nanodisk-Doped Solid-Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage.
    Xiong F; Yuan K; Aftab W; Jiang H; Shi J; Liang Z; Gao S; Zhong R; Wang H; Zou R
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1377-1385. PubMed ID: 33351579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-Performance Relationships for Tail Substituted Zwitterionic Betaine-Azobenzene Surfactants.
    Butler CSG; Giles LW; Sokolova AV; de Campo L; Tabor RF; Tuck KL
    Langmuir; 2022 Jun; 38(24):7522-7534. PubMed ID: 35678153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of phase-transition molecular solar thermal energy storage compounds: compact molecules with high energy densities.
    Qiu Q; Gerkman MA; Shi Y; Han GGD
    Chem Commun (Camb); 2021 Sep; 57(74):9458-9461. PubMed ID: 34528978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator.
    Schimka S; Klier DT; de Guereñu AL; Bastian P; Lomadze N; Kumke MU; Santer S
    J Phys Condens Matter; 2019 Mar; 31(12):125201. PubMed ID: 30625434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.