These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36534946)

  • 1. Evaluating Trans-Benzocyclobutene-Fused Cyclooctene as a Monomer for Chemically Recyclable Polymer.
    Su HW; Zhou J; Yoon S; Wang J
    Chem Asian J; 2023 Feb; 18(3):e202201133. PubMed ID: 36534946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Structure-Polymerization Thermodynamics Relationships of Fused-Ring Cyclooctenes for Developing Chemically Recyclable Polymers.
    Zhou J; Sathe D; Wang J
    J Am Chem Soc; 2022 Jan; 144(2):928-934. PubMed ID: 34985870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulating the Thermodynamics and Thermal Properties of Depolymerizable Polycyclooctenes through Substituent Effects.
    Sathe D; Chen H; Wang J
    Macromol Rapid Commun; 2023 Jan; 44(1):e2200304. PubMed ID: 35686515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers.
    Sathe D; Zhou J; Chen H; Su HW; Xie W; Hsu TG; Schrage BR; Smith T; Ziegler CJ; Wang J
    Nat Chem; 2021 Aug; 13(8):743-750. PubMed ID: 34294914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depolymerizable Olefinic Polymers Based on Fused-Ring Cyclooctene Monomers.
    Sathe D; Zhou J; Chen H; Wang J
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36591980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming the Low Driving Force in Forming Depolymerizable Polymers through Monomer Isomerization.
    Chen H; Shi Z; Hsu TG; Wang J
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25493-25498. PubMed ID: 34499390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Trends in Closed-Loop Recycling Polymers: Monomer Design and Catalytic Bulk Depolymerization.
    Liu Y; Lu XB
    Chemistry; 2023 Apr; 29(23):e202203635. PubMed ID: 36737871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization.
    Kariyawasam LS; Highmoore JF; Yang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303039. PubMed ID: 36988027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in the Synthesis of Chemically Recyclable Polymers.
    Li XL; Ma K; Xu F; Xu TQ
    Chem Asian J; 2023 Feb; 18(3):e202201167. PubMed ID: 36623942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Recyclable, High Molar Mass Polyoxazolidinones via Ring-Opening Metathesis Polymerization.
    Pal A; Wong AR; Lamb JR
    ACS Macro Lett; 2024 May; 13(5):502-507. PubMed ID: 38625148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Living Coordination Polymerization of a Six-Five Bicyclic Lactone to Produce Completely Recyclable Polyester.
    Zhu JB; Chen EY
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12558-12562. PubMed ID: 30088314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating the Crystallinity of a Circular Plastic towards Packaging Material with Outstanding Barrier Properties.
    Sangroniz A; Zhu JB; Etxeberria A; Chen EY; Sardon H
    Macromol Rapid Commun; 2022 Jul; 43(13):e2200008. PubMed ID: 35182407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Recyclable Polymer System Based on Nucleophilic Aromatic Ring-Opening Polymerization.
    Su YL; Yue L; Tran H; Xu M; Engler A; Ramprasad R; Qi HJ; Gutekunst WR
    J Am Chem Soc; 2023 Jun; 145(25):13950-13956. PubMed ID: 37307298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone.
    Li J; Liu F; Liu Y; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202207105. PubMed ID: 35674460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ring-Opening Polymerization of Cyclic Acetals: Strategy for both Recyclable and Degradable Materials.
    Shen T; Chen K; Chen Y; Ling J
    Macromol Rapid Commun; 2023 Jul; 44(13):e2300099. PubMed ID: 37020406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring-Opening Polymerization for the Goal of Chemically Recyclable Polymers.
    Plummer CM; Li L; Chen Y
    Macromolecules; 2023 Feb; 56(3):731-750. PubMed ID: 36818576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry.
    Deng Y; Zhang Q; Qu DH; Tian H; Feringa BL
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202209100. PubMed ID: 35922379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers.
    Wang Y; Zhu Y; Lv W; Wang X; Tao Y
    J Am Chem Soc; 2023 Jan; 145(3):1877-1885. PubMed ID: 36594572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance-Advantaged Stereoregular Recyclable Plastics Enabled by Aluminum-Catalytic Ring-Opening Polymerization of Dithiolactone.
    Zhu Y; Li M; Wang Y; Wang X; Tao Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302898. PubMed ID: 37058315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically Recyclable Vinyl Polymers by Free Radical Polymerization of Cyclic Styrene Derivatives.
    Chiba Y; Kawatani R; Kohsaka Y
    ACS Macro Lett; 2023 Dec; 12(12):1672-1676. PubMed ID: 38010412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.