These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36535020)
1. Water Leakage Pathway Leads to Internal Hydration of the p53 Core Domain. Lima IDM; Pedrote MM; Marques MA; Sousa GDS; Silva JL; de Oliveira GAP; Cino EA Biochemistry; 2023 Jan; 62(1):35-43. PubMed ID: 36535020 [TBL] [Abstract][Full Text] [Related]
2. Oncogenic R248W mutation induced conformational perturbation of the p53 core domain and the structural protection by proteomimetic amyloid inhibitor ADH-6. Liu Q; Yu Y; Wei G Phys Chem Chem Phys; 2024 Jul; 26(29):20068-20086. PubMed ID: 39007865 [TBL] [Abstract][Full Text] [Related]
3. Elucidating the Mechanisms of R248Q Mutation-Enhanced p53 Aggregation and Its Inhibition by Resveratrol. Liu Q; Li L; Yu Y; Wei G J Phys Chem B; 2023 Sep; 127(36):7708-7720. PubMed ID: 37665658 [TBL] [Abstract][Full Text] [Related]
4. Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. Kovachev PS; Banerjee D; Rangel LP; Eriksson J; Pedrote MM; Martins-Dinis MMDC; Edwards K; Cordeiro Y; Silva JL; Sanyal S J Biol Chem; 2017 Jun; 292(22):9345-9357. PubMed ID: 28420731 [TBL] [Abstract][Full Text] [Related]
5. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer. Pedrote MM; de Oliveira GAP; Felix AL; Mota MF; Marques MA; Soares IN; Iqbal A; Norberto DR; Gomes AMO; Gratton E; Cino EA; Silva JL J Biol Chem; 2018 Jul; 293(29):11374-11387. PubMed ID: 29853637 [TBL] [Abstract][Full Text] [Related]
6. Biophysical characterization of p53 core domain aggregates. Lima I; Navalkar A; Maji SK; Silva JL; de Oliveira GAP; Cino EA Biochem J; 2020 Jan; 477(1):111-120. PubMed ID: 31841126 [TBL] [Abstract][Full Text] [Related]
7. Insights into Allosteric Mechanisms of the Lung-Enriched p53 Mutants V157F and R158L. Lei J; Li X; Cai M; Guo T; Lin D; Deng X; Li Y Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077492 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation. Lei J; Cai M; Shen Y; Lin D; Deng X Phys Chem Chem Phys; 2021 Oct; 23(40):23032-23041. PubMed ID: 34612239 [TBL] [Abstract][Full Text] [Related]
9. Relevance of Amorphous and Amyloid-Like Aggregates of the p53 Core Domain to Loss of its DNA-Binding Activity. Hibino E; Tenno T; Hiroaki H Front Mol Biosci; 2022; 9():869851. PubMed ID: 35558561 [TBL] [Abstract][Full Text] [Related]
10. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein. Bromley D; Bauer MR; Fersht AR; Daggett V Protein Eng Des Sel; 2016 Sep; 29(9):377-90. PubMed ID: 27503952 [TBL] [Abstract][Full Text] [Related]
11. Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer. Silva JL; Cino EA; Soares IN; Ferreira VF; A P de Oliveira G Acc Chem Res; 2018 Jan; 51(1):181-190. PubMed ID: 29260852 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional Compounds for Activation of the p53-Y220C Mutant in Cancer. Miller JJ; Orvain C; Jozi S; Clarke RM; Smith JR; Blanchet A; Gaiddon C; Warren JJ; Storr T Chemistry; 2018 Dec; 24(67):17734-17742. PubMed ID: 30230059 [TBL] [Abstract][Full Text] [Related]
13. Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets. Petronilho EC; de Andrade GC; de Sousa GDS; Almeida FP; Mota MF; Gomes AVDS; Pinheiro CHS; da Silva MC; Arruda HRS; Marques MA; Vieira TCRG; de Oliveira GAP; Silva JL Commun Chem; 2024 Sep; 7(1):207. PubMed ID: 39284933 [TBL] [Abstract][Full Text] [Related]
14. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Yu Y; Liu Q; Zeng J; Tan Y; Tang Y; Wei G Chem Sci; 2024 Aug; 15(32):12806-12818. PubMed ID: 39148776 [TBL] [Abstract][Full Text] [Related]
15. Revisiting a challenging p53 binding site: a diversity-optimized HEFLib reveals diverse binding modes in T-p53C-Y220C. Stahlecker J; Klett T; Schwer M; Jaag S; Dammann M; Ernst LN; Braun MB; Zimmermann MO; Kramer M; Lämmerhofer M; Stehle T; Coles M; Boeckler FM RSC Med Chem; 2022 Dec; 13(12):1575-1586. PubMed ID: 36561072 [TBL] [Abstract][Full Text] [Related]
16. Wild type p53 function in p53 Sundar D; Yu Y; Katiyar SP; Putri JF; Dhanjal JK; Wang J; Sari AN; Kolettas E; Kaul SC; Wadhwa R J Exp Clin Cancer Res; 2019 Feb; 38(1):103. PubMed ID: 30808373 [TBL] [Abstract][Full Text] [Related]
17. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation. Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151 [TBL] [Abstract][Full Text] [Related]
18. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators. Balourdas DI; Markl AM; Krämer A; Settanni G; Joerger AC Cell Death Dis; 2024 Jun; 15(6):408. PubMed ID: 38862470 [TBL] [Abstract][Full Text] [Related]
19. Reconnaissance of Allostery via the Restoration of Native p53 DNA-Binding Domain Dynamics in Y220C Mutant p53 Tumor Suppressor Protein. Han ISM; Thayer KM ACS Omega; 2024 May; 9(18):19837-19847. PubMed ID: 38737036 [TBL] [Abstract][Full Text] [Related]
20. Targeting Y220C mutated p53 by Foeniculum vulgare-derived phytochemicals as cancer therapeutics. Garg S; Singh J; Verma SR J Mol Model; 2023 Jan; 29(2):55. PubMed ID: 36700982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]