These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36535028)

  • 1. DeSeg: auto detector-based segmentation for brain metastases.
    Yu H; Zhang Z; Xia W; Liu Y; Liu L; Luo W; Zhou J; Zhang Y
    Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36535028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications.
    Liu Y; Stojadinovic S; Hrycushko B; Wardak Z; Lu W; Yan Y; Jiang SB; Timmerman R; Abdulrahman R; Nedzi L; Gu X
    Phys Med Biol; 2016 Dec; 61(24):8440-8461. PubMed ID: 27845915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection and segmentation of multiple brain metastases on magnetic resonance image using asymmetric UNet architecture.
    Cao Y; Vassantachart A; Ye JC; Yu C; Ruan D; Sheng K; Lao Y; Shen ZL; Balik S; Bian S; Zada G; Shiu A; Chang EL; Yang W
    Phys Med Biol; 2021 Jan; 66(1):015003. PubMed ID: 33186927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe M; Chen M; Briere TM; Wang Y; Son JB; Pagel MD; Ma J; Li J
    Radiother Oncol; 2020 Dec; 153():189-196. PubMed ID: 32937104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery.
    Wang JY; Qu V; Hui C; Sandhu N; Mendoza MG; Panjwani N; Chang YC; Liang CH; Lu JT; Wang L; Kovalchuk N; Gensheimer MF; Soltys SG; Pollom EL
    Radiat Oncol; 2023 Apr; 18(1):61. PubMed ID: 37016416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided Detection of Brain Metastases in T1-weighted MRI for Stereotactic Radiosurgery Using Deep Learning Single-Shot Detectors.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe MK; Chen MM; Briere TM; Wang Y; Son JB; Pagel MD; Li J; Ma J
    Radiology; 2020 May; 295(2):407-415. PubMed ID: 32181729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended nnU-Net for Brain Metastasis Detection and Segmentation in Contrast-Enhanced Magnetic Resonance Imaging With a Large Multi-Institutional Data Set.
    Yoo Y; Gibson E; Zhao G; Re TJ; Parmar H; Das J; Wang H; Kim MM; Shen C; Lee Y; Kondziolka D; Ibrahim M; Lian J; Jain R; Zhu T; Comaniciu D; Balter JM; Cao Y
    Int J Radiat Oncol Biol Phys; 2025 Jan; 121(1):241-249. PubMed ID: 39059508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data.
    Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M
    Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images.
    Hsu DG; Ballangrud Å; Shamseddine A; Deasy JO; Veeraraghavan H; Cervino L; Beal K; Aristophanous M
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34315148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
    Li R; Guo Y; Zhao Z; Chen M; Liu X; Gong G; Wang L
    Eur Radiol; 2023 May; 33(5):3521-3531. PubMed ID: 36695903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation.
    Qu J; Zhang W; Shu X; Wang Y; Wang L; Xu M; Yao L; Hu N; Tang B; Zhang L; Lui S
    Eur Radiol; 2023 Oct; 33(10):6648-6658. PubMed ID: 37186214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning auto-segmentation on multi-sequence magnetic resonance images for upper abdominal organs.
    Amjad A; Xu J; Thill D; Zhang Y; Ding J; Paulson E; Hall W; Erickson BA; Li XA
    Front Oncol; 2023; 13():1209558. PubMed ID: 37483486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automatic brain tumor segmentation for 3D evaluation in augmented reality.
    Fick T; van Doormaal JAM; Tosic L; van Zoest RJ; Meulstee JW; Hoving EW; van Doormaal TPC
    Neurosurg Focus; 2021 Aug; 51(2):E14. PubMed ID: 34333477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation.
    Yang Z; Chen M; Kazemimoghadam M; Ma L; Stojadinovic S; Timmerman R; Dan T; Wardak Z; Lu W; Gu X
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34952535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network.
    Wang H; Qu T; Bernstein K; Barbee D; Kondziolka D
    Radiat Oncol; 2023 May; 18(1):78. PubMed ID: 37158968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001.
    Liang Y; Lee K; Bovi JA; Palmer JD; Brown PD; Gondi V; Tomé WA; Benzinger TLS; Mehta MP; Li XA
    Int J Radiat Oncol Biol Phys; 2022 Nov; 114(3):529-536. PubMed ID: 35787927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Detection of Brain Metastases on T1-Weighted MRI Using a Convolutional Neural Network: Impact of Volume Aware Loss and Sampling Strategy.
    Chartrand G; Emiliani RD; Pawlowski SA; Markel DA; Bahig H; Cengarle-Samak A; Rajakesari S; Lavoie J; Ducharme S; Roberge D
    J Magn Reson Imaging; 2022 Dec; 56(6):1885-1898. PubMed ID: 35624544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study.
    Buchner JA; Kofler F; Etzel L; Mayinger M; Christ SM; Brunner TB; Wittig A; Menze B; Zimmer C; Meyer B; Guckenberger M; Andratschke N; El Shafie RA; Debus J; Rogers S; Riesterer O; Schulze K; Feldmann HJ; Blanck O; Zamboglou C; Ferentinos K; Wolff R; Eitz KA; Combs SE; Bernhardt D; Wiestler B; Peeken JC
    Radiother Oncol; 2023 Jan; 178():109425. PubMed ID: 36442609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation.
    Ren J; Eriksen JG; Nijkamp J; Korreman SS
    Acta Oncol; 2021 Nov; 60(11):1399-1406. PubMed ID: 34264157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.