BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 36535357)

  • 1. Highly gallol-substituted, rapidly self-crosslinkable, and robust chitosan hydrogel for 3D bioprinting.
    Gwak MA; Lee SJ; Lee D; Park SA; Park WH
    Int J Biol Macromol; 2023 Feb; 227():493-504. PubMed ID: 36535357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-crosslinkable methacrylated konjac glucomannan (KGMMA) hydrogels as a promising bioink for 3D bioprinting.
    Qin Z; Pang Y; Lu C; Yang Y; Gao M; Zheng L; Zhao J
    Biomater Sci; 2022 Nov; 10(22):6549-6557. PubMed ID: 36205771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology.
    Ullah F; Javed F; Mushtaq I; Rahman LU; Ahmed N; Din IU; Alotaibi MA; Alharthi AI; Ahmad A; Bakht MA; Khan F; Tasleem S
    Int J Biol Macromol; 2023 Mar; 230():123131. PubMed ID: 36610570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering
    Mohabatpour F; Duan X; Yazdanpanah Z; Tabil XL; Lobanova L; Zhu N; Papagerakis S; Chen X; Papagerakis P
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36583240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks.
    Gao Q; Kim BS; Gao G
    Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.
    Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K
    Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified mannan for 3D bioprinting: a potential novel bioink for tissue engineering.
    Huang Y; Zhou Z; Hu Y; He N; Li J; Han X; Zhao G; Liu H
    Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34348252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies.
    Chimene D; Kaunas R; Gaharwar AK
    Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting.
    Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.