These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36535471)

  • 1. Comparative assessment of environmental impacts of 1st generation (corn feedstock) and 3rd generation (carbon dioxide feedstock) PHA production pathways using life cycle assessment.
    Koch M; Spierling S; Venkatachalam V; Endres HJ; Owsianiak M; Vea EB; Daffert C; Neureiter M; Fritz I
    Sci Total Environ; 2023 Mar; 863():160991. PubMed ID: 36535471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.
    Heimersson S; Morgan-Sagastume F; Peters GM; Werker A; Svanström M
    N Biotechnol; 2014 Jun; 31(4):383-93. PubMed ID: 24121250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How sustainable are biopolymers? Findings from a life cycle assessment of polyhydroxyalkanoate production from rapeseed-oil derivatives.
    Nitkiewicz T; Wojnarowska M; Sołtysik M; Kaczmarski A; Witko T; Ingrao C; Guzik M
    Sci Total Environ; 2020 Dec; 749():141279. PubMed ID: 32818854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion of multiple climate tipping as a new impact category in life cycle assessment of polyhydroxyalkanoate (PHA)-based plastics.
    Vea EB; Fabbri S; Spierling S; Owsianiak M
    Sci Total Environ; 2021 Sep; 788():147544. PubMed ID: 34038855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review.
    Gutschmann B; Huang B; Santolin L; Thiele I; Neubauer P; Riedel SL
    Microbiol Res; 2022 Nov; 264():127177. PubMed ID: 36058055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey.
    Asunis F; De Gioannis G; Francini G; Lombardi L; Muntoni A; Polettini A; Pomi R; Rossi A; Spiga D
    Waste Manag; 2021 Aug; 132():31-43. PubMed ID: 34304020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept.
    Ali SS; Elsamahy T; Abdelkarim EA; Al-Tohamy R; Kornaros M; Ruiz HA; Zhao T; Li F; Sun J
    Bioresour Technol; 2022 Nov; 363():127869. PubMed ID: 36064080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An environmental and economic assessment of bioplastic from urban biowaste. The example of polyhydroxyalkanoate.
    Andreasi Bassi S; Boldrin A; Frenna G; Astrup TF
    Bioresour Technol; 2021 May; 327():124813. PubMed ID: 33582519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges and Perspectives of Polyhydroxyalkanoate Production From Microalgae/Cyanobacteria and Bacteria as Microbial Factories: An Assessment of Hybrid Biological System.
    Afreen R; Tyagi S; Singh GP; Singh M
    Front Bioeng Biotechnol; 2021; 9():624885. PubMed ID: 33681160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental assessment of complex wastewater valorisation by polyhydroxyalkanoates production.
    Roibás-Rozas A; Mosquera-Corral A; Hospido A
    Sci Total Environ; 2020 Nov; 744():140893. PubMed ID: 32721675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects.
    Tan FHP; Nadir N; Sudesh K
    Front Bioeng Biotechnol; 2022; 10():879476. PubMed ID: 35646848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guiding environmental sustainability of emerging bioconversion technology for waste-derived sophorolipid production by adopting a dynamic life cycle assessment (dLCA) approach.
    Hu X; Subramanian K; Wang H; Roelants SLKW; To MH; Soetaert W; Kaur G; Lin CSK; Chopra SS
    Environ Pollut; 2021 Jan; 269():116101. PubMed ID: 33307395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications.
    Mahato RP; Kumar S; Singh P
    Arch Microbiol; 2023 Apr; 205(5):172. PubMed ID: 37017747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity.
    Vicente D; Proença DN; Morais PV
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental evaluation of polyhydroxyalkanoates from animal slaughtering waste using Material Input Per Service Unit.
    Ali N; Rashid MI; Rehan M; Shah Eqani SAMA; Summan ASA; Ismail IMI; Koller M; Ali AM; Shahzad K
    N Biotechnol; 2023 Jul; 75():40-51. PubMed ID: 36948413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources.
    Ray S; Jin JO; Choi I; Kim M
    Front Bioeng Biotechnol; 2022; 10():907500. PubMed ID: 36686222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review.
    Kurian NS; Das B
    Int J Biol Macromol; 2021 Jul; 183():1881-1890. PubMed ID: 34090850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated analysis of Whole genome sequencing and life cycle assessment for polyhydroxyalkanoates production by Cupriavidus sp. ISTL7.
    Gupta J; Rathour R; Maheshwari N; Shekhar Thakur I
    Bioresour Technol; 2021 Oct; 337():125418. PubMed ID: 34153867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.
    Liu C; Huang Y; Wang X; Tai Y; Liu L; Liu H
    Integr Environ Assess Manag; 2018 Jan; 14(1):139-149. PubMed ID: 28796442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.