These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36535725)

  • 21. Interfacial Stability of Phosphate-NASICON Solid Electrolytes in Ni-Rich NCM Cathode-Based Solid-State Batteries.
    Yoshinari T; Koerver R; Hofmann P; Uchimoto Y; Zeier WG; Janek J
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23244-23253. PubMed ID: 31199108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries.
    Li Y; Arnold W; Thapa A; Jasinski JB; Sumanasekera G; Sunkara M; Druffel T; Wang H
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42653-42659. PubMed ID: 32845121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning of composition and morphology of LiFePO
    Erabhoina H; Thelakkat M
    Sci Rep; 2022 Mar; 12(1):5454. PubMed ID: 35361808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three Birds with One Stone: An Integrated Cathode-Electrolyte Structure for High-Performance Solid-State Lithium-Oxygen Batteries.
    Li CL; Huang G; Yu Y; Xiong Q; Yan JM; Zhang XB
    Small; 2022 Apr; 18(17):e2107833. PubMed ID: 35347827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sucrose-assisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes.
    Wu Y; Wen Z; Feng H; Li J
    Chemistry; 2013 Apr; 19(18):5631-6. PubMed ID: 23468054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives.
    Nie K; Hong Y; Qiu J; Li Q; Yu X; Li H; Chen L
    Front Chem; 2018; 6():616. PubMed ID: 30619824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct regeneration of waste LiFePO
    Song L; Qi C; Wang S; Zhu X; Zhang T; Jin Y; Zhang M
    Waste Manag; 2023 Feb; 157():141-148. PubMed ID: 36538835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamentals of the Cathode-Electrolyte Interface in All-solid-state Lithium Batteries.
    Jiang Y; Lai A; Ma J; Yu K; Zeng H; Zhang G; Huang W; Wang C; Chi SS; Wang J; Deng Y
    ChemSusChem; 2023 May; 16(9):e202202156. PubMed ID: 36715574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO
    Loveridge MJ; Lain MJ; Johnson ID; Roberts A; Beattie SD; Dashwood R; Darr JA; Bhagat R
    Sci Rep; 2016 Nov; 6():37787. PubMed ID: 27898104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Silica-Reinforced Composite Electrolyte with Greatly Enhanced Interfacial Lithium-Ion Transfer Kinetics for High-Performance Lithium Metal Batteries.
    Zhang T; Li J; Li X; Wang R; Wang C; Zhang Z; Yin L
    Adv Mater; 2022 Oct; 34(41):e2205575. PubMed ID: 36028217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile and Powerful In Situ Polymerization Strategy for Sulfur-Based All-Solid Polymer Electrolytes in Lithium Batteries.
    Xu R; Xiao B; Xuan C; Gao S; Chai J; Liu S; Chen Y; Zheng Y; Cheng X; Guo Q; Liu Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34274-34281. PubMed ID: 34255493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent-Free Method Prepared a Sandwich-like Nanofibrous Membrane-Reinforced Polymer Electrolyte for High-Performance All-Solid-State Lithium Batteries.
    Zhang D; Xu X; Ji S; Wang Z; Liu Z; Shen J; Hu R; Liu J; Zhu M
    ACS Appl Mater Interfaces; 2020 May; 12(19):21586-21595. PubMed ID: 32302102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A High-Capacity Polyethylene Oxide-Based All-Solid-State Battery Using a Metal-Organic Framework Hosted Silicon Anode.
    Zhang L; Lin Y; Peng X; Wu M; Zhao T
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24798-24805. PubMed ID: 35603575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries.
    Li Y; Xu H; Chien PH; Wu N; Xin S; Xue L; Park K; Hu YY; Goodenough JB
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8587-8591. PubMed ID: 29734500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries.
    Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries.
    Asano T; Sakai A; Ouchi S; Sakaida M; Miyazaki A; Hasegawa S
    Adv Mater; 2018 Nov; 30(44):e1803075. PubMed ID: 30216562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Fluorine Doping on Structural and Electrochemical Properties of Li
    Lu Y; Meng X; Alonso JA; Fernández-Díaz MT; Sun C
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2042-2049. PubMed ID: 30562455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Performance All-Inorganic Solid-State Sodium-Sulfur Battery.
    Yue J; Han F; Fan X; Zhu X; Ma Z; Yang J; Wang C
    ACS Nano; 2017 May; 11(5):4885-4891. PubMed ID: 28459546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.
    Kim YS; Jeoung TH; Nam SP; Lee SH; Kim JC; Lee SG
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2436-40. PubMed ID: 26413683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interface Improvement of Li
    Liu H; Li J; Feng W; Kang F
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39414-39423. PubMed ID: 34382407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.