These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36536394)

  • 1. Continuous process technology for bottom-up synthesis of soluble cello-oligosaccharides by immobilized cells co-expressing three saccharide phosphorylases.
    Schwaiger KN; Nidetzky B
    Microb Cell Fact; 2022 Dec; 21(1):265. PubMed ID: 36536394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cascade biocatalysis in whole cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production.
    Schwaiger KN; Voit A; Wiltschi B; Nidetzky B
    Microb Cell Fact; 2022 Apr; 21(1):61. PubMed ID: 35397553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of cello-oligosaccharides from corncob residue by degradation-synthesis reactions.
    Liang Y; Ji W; Sun X; Hao Z; Wang X; Wang Y; Zhang W; Bai Y; Qin X; Luo H; Yao B; Su X; Huang H
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):13. PubMed ID: 38170309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic modeling of phosphorylase-catalyzed iterative β-1,4-glycosylation for degree of polymerization-controlled synthesis of soluble cello-oligosaccharides.
    Klimacek M; Zhong C; Nidetzky B
    Biotechnol Biofuels; 2021 Jun; 14(1):134. PubMed ID: 34112242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials.
    Nidetzky B; Zhong C
    Biotechnol Adv; 2021 Nov; 51():107633. PubMed ID: 32966861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Enzyme Phosphorylase Cascade for Integrated Production of Short-Chain Cellodextrins.
    Zhong C; Nidetzky B
    Biotechnol J; 2020 Mar; 15(3):e1900349. PubMed ID: 31677345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-Chain Cello-oligosaccharides: Intensification and Scale-up of Their Enzymatic Production and Selective Growth Promotion among Probiotic Bacteria.
    Zhong C; Ukowitz C; Domig KJ; Nidetzky B
    J Agric Food Chem; 2020 Aug; 68(32):8557-8567. PubMed ID: 32687709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Synthesis of cello-oligosaccharides which promotes the growth of intestinal probiotics by multi-enzyme cascade reaction].
    Zheng P; Wang L; Hu M; Wei H; Tao Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3406-3420. PubMed ID: 37622369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous process technology for glucoside production from sucrose using a whole cell-derived solid catalyst of sucrose phosphorylase.
    Kruschitz A; Peinsipp L; Pfeiffer M; Nidetzky B
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5383-5394. PubMed ID: 34189615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose.
    Ubiparip Z; Moreno DS; Beerens K; Desmet T
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8327-8337. PubMed ID: 32803296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural C-glycoside nothofagin.
    Liu H; Nidetzky B
    Biotechnol Bioeng; 2021 Nov; 118(11):4402-4413. PubMed ID: 34355386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Product solubility control in cellooligosaccharide production by coupled cellobiose and cellodextrin phosphorylase.
    Zhong C; Luley-Goedl C; Nidetzky B
    Biotechnol Bioeng; 2019 Sep; 116(9):2146-2155. PubMed ID: 31062868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic phosphate self-sufficient whole-cell biocatalysts containing two co-expressed phosphorylases facilitate cellobiose production.
    Wang L; Zheng P; Hu M; Tao Y
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35289917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production II: Model-based multiobjective optimization.
    Sigg A; Klimacek M; Nidetzky B
    Biotechnol Bioeng; 2024 Feb; 121(2):566-579. PubMed ID: 37986649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights to improve the activity of glycosyl phosphorylases from Ruminococcus
    Storani A; Guerrero SA; Iglesias AA
    Front Chem; 2023; 11():1176537. PubMed ID: 37090251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose.
    Schwaiger KN; Voit A; Dobiašová H; Luley C; Wiltschi B; Nidetzky B
    Biotechnol J; 2020 Nov; 15(11):e2000063. PubMed ID: 32668097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Laminaribiose Production Using an Immobilized Bienzymatic System in a Packed Bed Reactor.
    Abi A; Wang A; Jördening HJ
    Appl Biochem Biotechnol; 2018 Dec; 186(4):861-876. PubMed ID: 29766370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development.
    Sigg A; Klimacek M; Nidetzky B
    Biotechnol Bioeng; 2024 Feb; 121(2):580-592. PubMed ID: 37983971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.
    Sawano T; Saburi W; Hamura K; Matsui H; Mori H
    FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole cell-based catalyst for enzymatic production of the osmolyte 2-O-α-glucosylglycerol.
    Schwaiger KN; Cserjan-Puschmann M; Striedner G; Nidetzky B
    Microb Cell Fact; 2021 Apr; 20(1):79. PubMed ID: 33827582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.