BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 36536463)

  • 1. 3D printing of injury-preconditioned secretome/collagen/heparan sulfate scaffolds for neurological recovery after traumatic brain injury in rats.
    Liu XY; Chang ZH; Chen C; Liang J; Shi JX; Fan X; Shao Q; Meng WW; Wang JJ; Li XH
    Stem Cell Res Ther; 2022 Dec; 13(1):525. PubMed ID: 36536463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional-printed collagen/chitosan/secretome derived from HUCMSCs scaffolds for efficient neural network reconstruction in canines with traumatic brain injury.
    Liu X; Zhang G; Wei P; Zhong L; Chen Y; Zhang J; Chen X; Zhou L
    Regen Biomater; 2022; 9():rbac043. PubMed ID: 35855109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells in repair of neurological deficit after traumatic brain injury in rats].
    Tan K; Wang X; Zhang J; Zhuang Z; Dong T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):745-752. PubMed ID: 29905055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine.
    Jiang J; Liu X; Chen H; Dai C; Niu X; Dai L; Chen X; Zhang S
    Biomater Sci; 2020 Nov; 8(22):6362-6374. PubMed ID: 33026366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of regenerative complexes in traumatic brain injury canine models enhances the reconstruction of neural networks and motor function recovery.
    Jiang J; Dai C; Liu X; Dai L; Li R; Ma K; Xu H; Zhao F; Zhang Z; He T; Niu X; Chen X; Zhang S
    Theranostics; 2021; 11(2):768-788. PubMed ID: 33391504
    [No Abstract]   [Full Text] [Related]  

  • 6. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats.
    Chen C; Xu HH; Liu XY; Zhang YS; Zhong L; Wang YW; Xu L; Wei P; Chen YX; Liu P; Hao CR; Jia XL; Hu N; Wu XY; Gu XS; Chen LQ; Li XH
    Regen Biomater; 2022; 9():rbac014. PubMed ID: 35480857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injury-preconditioning secretome of umbilical cord mesenchymal stem cells amplified the neurogenesis and cognitive recovery after severe traumatic brain injury in rats.
    Liu XY; Wei MG; Liang J; Xu HH; Wang JJ; Wang J; Yang XP; Lv FF; Wang KQ; Duan JH; Tu Y; Zhang S; Chen C; Li XH
    J Neurochem; 2020 Apr; 153(2):230-251. PubMed ID: 31465551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury.
    Zhang J; Wang RJ; Chen M; Liu XY; Ma K; Xu HY; Deng WS; Ye YC; Li WX; Chen XY; Sun HT
    Neural Regen Res; 2021 Jun; 16(6):1068-1077. PubMed ID: 33269752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of interferon γ-preconditioned NSC-derived exosomes/collagen/chitosan biological scaffolds for neurological recovery after TBI.
    Chen C; Chang ZH; Yao B; Liu XY; Zhang XW; Liang J; Wang JJ; Bao SQ; Chen MM; Zhu P; Li XH
    Bioact Mater; 2024 Sep; 39():375-391. PubMed ID: 38846528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium alginate/collagen/stromal cell-derived factor-1 neural scaffold loaded with BMSCs promotes neurological function recovery after traumatic brain injury.
    Ma S; Zhou J; Huang T; Zhang Z; Xing Q; Zhou X; Zhang K; Yao M; Cheng T; Wang X; Wen X; Guan F
    Acta Biomater; 2021 Sep; 131():185-197. PubMed ID: 34217903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.
    Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH
    J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature 3D-printed collagen/chitosan scaffolds loaded with exosomes derived from neural stem cells pretreated with insulin growth factor-1 enhance neural regeneration after traumatic brain injury.
    Liu XY; Feng YH; Feng QB; Zhang JY; Zhong L; Liu P; Wang S; Huang YR; Chen XY; Zhou LX
    Neural Regen Res; 2023 Sep; 18(9):1990-1998. PubMed ID: 36926724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury.
    Sun Y; Yang C; Zhu X; Wang JJ; Liu XY; Yang XP; An XW; Liang J; Dong HJ; Jiang W; Chen C; Wang ZG; Sun HT; Tu Y; Zhang S; Chen F; Li XH
    J Biomed Mater Res A; 2019 Sep; 107(9):1898-1908. PubMed ID: 30903675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen/heparin scaffold combined with vascular endothelial growth factor promotes the repair of neurological function in rats with traumatic brain injury.
    Zhang J; Liu X; Ma K; Chen M; Xu H; Niu X; Gu H; Wang R; Chen X; Sun H
    Biomater Sci; 2021 Feb; 9(3):745-764. PubMed ID: 33200759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury.
    Duan H; Li X; Wang C; Hao P; Song W; Li M; Zhao W; Gao Y; Yang Z
    Acta Biomater; 2016 Nov; 45():182-195. PubMed ID: 27562609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed collagen/silk fibroin/secretome derived from bFGF-pretreated HUCMSCs scaffolds enhanced therapeutic ability in canines traumatic brain injury model.
    Liu X; Zhang G; Wei P; Hao L; Zhong L; Zhong K; Liu C; Liu P; Feng Q; Wang S; Zhang J; Tian R; Zhou L
    Front Bioeng Biotechnol; 2022; 10():995099. PubMed ID: 36091465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia-pretreated mesenchymal stem cell-derived exosomes-loaded low-temperature extrusion 3D-printed implants for neural regeneration after traumatic brain injury in canines.
    Liu X; Wang J; Wang P; Zhong L; Wang S; Feng Q; Wei X; Zhou L
    Front Bioeng Biotechnol; 2022; 10():1025138. PubMed ID: 36246376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury.
    Liu X; Zhang J; Cheng X; Liu P; Feng Q; Wang S; Li Y; Gu H; Zhong L; Chen M; Zhou L
    Regen Biomater; 2023; 10():rbac085. PubMed ID: 36683754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury.
    Zhang Y; Chopp M; Zhang ZG; Katakowski M; Xin H; Qu C; Ali M; Mahmood A; Xiong Y
    Neurochem Int; 2017 Dec; 111():69-81. PubMed ID: 27539657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.