These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36536681)

  • 1. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep learning model.
    Zhang L; Wang W; Yu H; Zhang Z; Yang X; Liang F; Li S; Yang S; Liu X
    iScience; 2022 Dec; 25(12):105638. PubMed ID: 36536681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Learning-Based Vehicle-Cloud Collaboration Approach for Joint Estimation of State-of-Energy and State-of-Health.
    Mei P; Karimi HR; Chen F; Yang S; Huang C; Qiu S
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries.
    Ali MU; Zafar A; Masood H; Kallu KD; Khan MA; Tariq U; Kim YJ; Chang B
    Comput Intell Neurosci; 2022; 2022():1575303. PubMed ID: 35733564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness testing framework for RUL prediction Deep LSTM networks.
    Sayah M; Guebli D; Al Masry Z; Zerhouni N
    ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary Structural Ensemble Learning Cluster for Estimating the State of Health of Lithium-Ion Batteries.
    Chen SZ; Zhang H; Zeng L; Fan Y; Chang L; Zhang Y
    ACS Omega; 2022 May; 7(20):17406-17415. PubMed ID: 35647454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-learning based spatio-temporal generative model on assessing state-of-health for Li-ion batteries with partially-cycled profiles.
    Park S; Lee H; Scott-Nevros ZK; Lim D; Seo DH; Choi Y; Lim H; Kim D
    Mater Horiz; 2023 Apr; 10(4):1274-1281. PubMed ID: 36806877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics.
    Yin A; Tan Z; Tan J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Networks with Adaptive Bayesian Learning.
    Pugalenthi K; Park H; Hussain S; Raghavan N
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.
    Kamat PV; Sugandhi R; Kumar S
    PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning.
    Yao L; Wen J; Xu S; Zheng J; Hou J; Fang Z; Xiao Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives.
    Shu X; Shen S; Shen J; Zhang Y; Li G; Chen Z; Liu Y
    iScience; 2021 Nov; 24(11):103265. PubMed ID: 34761185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries.
    Ma G; Xu S; Yang T; Du Z; Zhu L; Ding H; Yuan Y
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35657842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction.
    Jia J; Yuan S; Shi Y; Wen J; Pang X; Zeng J
    iScience; 2022 Apr; 25(4):103988. PubMed ID: 35310948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for state-of-health prediction of lithium-ion batteries based on machine learning.
    Shu X; Shen S; Shen J; Zhang Y; Li G; Chen Z; Liu Y
    STAR Protoc; 2022 Jun; 3(2):101272. PubMed ID: 35403003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme.
    Hou G; Xu S; Zhou N; Yang L; Fu Q
    Comput Intell Neurosci; 2020; 2020():9601389. PubMed ID: 32802032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification.
    Yang J; Peng Y; Xie J; Wang P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing the Eenvelope in Battery Estimation Algorithms.
    Allam A; Catenaro E; Onori S
    iScience; 2020 Dec; 23(12):101847. PubMed ID: 33313491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer-Learning-Based Estimation of the Remaining Useful Life of Heterogeneous Bearing Types Using Low-Frequency Accelerometers.
    Schwendemann S; Sikora A
    J Imaging; 2023 Feb; 9(2):. PubMed ID: 36826953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.