These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36536981)

  • 21. Accuracy and reliability of retinal photo grading for diabetic retinopathy: Remote graders from a developing country and standard retinal photo grader in Australia.
    Islam FMA
    PLoS One; 2017; 12(6):e0179310. PubMed ID: 28632764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of an autonomous artificial intelligence-based diagnostic system for holistic maculopathy screening in a routine occupational health checkup context.
    Font O; Torrents-Barrena J; Royo D; García SB; Zarranz-Ventura J; Bures A; Salinas C; Zapata MÁ
    Graefes Arch Clin Exp Ophthalmol; 2022 Oct; 260(10):3255-3265. PubMed ID: 35567610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autonomous artificial intelligence versus teleophthalmology for diabetic retinopathy.
    Musetti D; Cutolo CA; Bonetto M; Giacomini M; Maggi D; Viviani GL; Gandin I; Traverso CE; Nicolò M
    Eur J Ophthalmol; 2024 Apr; ():11206721241248856. PubMed ID: 38656241
    [No Abstract]   [Full Text] [Related]  

  • 24. Synthetic artificial intelligence using generative adversarial network for retinal imaging in detection of age-related macular degeneration.
    Wang Z; Lim G; Ng WY; Tan TE; Lim J; Lim SH; Foo V; Lim J; Sinisterra LG; Zheng F; Liu N; Tan GSW; Cheng CY; Cheung GCM; Wong TY; Ting DSW
    Front Med (Lausanne); 2023; 10():1184892. PubMed ID: 37425325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images.
    Stevenson CH; Hong SC; Ogbuehi KC
    Clin Exp Ophthalmol; 2019 May; 47(4):484-489. PubMed ID: 30370587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Associated factors of diabetic retinopathy by artificial intelligence evaluation of fundus images in Japan.
    Komatsu K; Sano K; Fukai K; Nakagawa R; Nakagawa T; Tatemichi M; Nakano T
    Sci Rep; 2023 Nov; 13(1):19742. PubMed ID: 37957353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AI-Human Hybrid Workflow Enhances Teleophthalmology for the Detection of Diabetic Retinopathy.
    Dow ER; Khan NC; Chen KM; Mishra K; Perera C; Narala R; Basina M; Dang J; Kim M; Levine M; Phadke A; Tan M; Weng K; Do DV; Moshfeghi DM; Mahajan VB; Mruthyunjaya P; Leng T; Myung D
    Ophthalmol Sci; 2023 Dec; 3(4):100330. PubMed ID: 37449051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A pilot cost-analysis study comparing AI-based EyeArt® and ophthalmologist assessment of diabetic retinopathy in minority women in Oslo, Norway.
    Karabeg M; Petrovski G; Hertzberg SN; Erke MG; Fosmark DS; Russell G; Moe MC; Volke V; Raudonis V; Verkauskiene R; Sokolovska J; Haugen IK; Petrovski BE
    Int J Retina Vitreous; 2024 May; 10(1):40. PubMed ID: 38783384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders.
    Tufail A; Rudisill C; Egan C; Kapetanakis VV; Salas-Vega S; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Srinivas S; Nittala M; Sadda S; Taylor P; Rudnicka AR
    Ophthalmology; 2017 Mar; 124(3):343-351. PubMed ID: 28024825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new handheld fundus camera combined with visual artificial intelligence facilitates diabetic retinopathy screening.
    Ruan S; Liu Y; Hu WT; Jia HX; Wang SS; Song ML; Shen MX; Luo DW; Ye T; Wang FH
    Int J Ophthalmol; 2022; 15(4):620-627. PubMed ID: 35450182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Muranga Teleophthalmology Study: A Comparison of Virtual (Teleretina) Assessment with in-person Clinical Examination to Diagnose Diabetic Retinopathy and Age-related Macular Degeneration in Kenya.
    Nanji K; Kherani IN; Damji KF; Nyenze M; Kiage D; Tennant MT
    Middle East Afr J Ophthalmol; 2020; 27(2):91-99. PubMed ID: 32874041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effectiveness of artificial intelligence-based automated grading and training system in education of manual detection of diabetic retinopathy.
    Qian X; Jingying H; Xian S; Yuqing Z; Lili W; Baorui C; Wei G; Yefeng Z; Qiang Z; Chunyan C; Cheng B; Kai M; Yi Q
    Front Public Health; 2022; 10():1025271. PubMed ID: 36419999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload.
    Soto-Pedre E; Navea A; Millan S; Hernaez-Ortega MC; Morales J; Desco MC; Pérez P
    Acta Ophthalmol; 2015 Feb; 93(1):e52-6. PubMed ID: 24975456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cost-Effectiveness of Screening for Intermediate Age-Related Macular Degeneration during Diabetic Retinopathy Screening.
    Chan CK; Gangwani RA; McGhee SM; Lian J; Wong DS
    Ophthalmology; 2015 Nov; 122(11):2278-85. PubMed ID: 26315045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of LuxIA, a Cloud-Based AI Diabetic Retinopathy Screening Tool Using a Single Color Fundus Image.
    Blair JPM; Rodriguez JN; Lasagni Vitar RM; Stadelmann MA; Abreu-González R; Donate J; Ciller C; Apostolopoulos S; Bermudez C; De Zanet S
    Transl Vis Sci Technol; 2023 Nov; 12(11):38. PubMed ID: 38032322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Handheld fundus camera performance, image quality and outcomes of diabetic retinopathy grading in a pilot screening study.
    Kubin AM; Wirkkala J; Keskitalo A; Ohtonen P; Hautala N
    Acta Ophthalmol; 2021 Dec; 99(8):e1415-e1420. PubMed ID: 33724706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Digital image processing software for diagnosing diabetic retinopathy from fundus photograph.
    Ratanapakorn T; Daengphoonphol A; Eua-Anant N; Yospaiboon Y
    Clin Ophthalmol; 2019; 13():641-648. PubMed ID: 31118551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical evaluation of AI-assisted screening for diabetic retinopathy in rural areas of midwest China.
    Hao S; Liu C; Li N; Wu Y; Li D; Gao Q; Yuan Z; Li G; Li H; Yang J; Fan S
    PLoS One; 2022; 17(10):e0275983. PubMed ID: 36227905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.
    Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R
    Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The incidental findings of age-related macular degeneration during diabetic retinopathy screening.
    Gangwani R; Lai WW; Sum R; McGhee SM; Chan CW; Hedley AJ; Wong D
    Graefes Arch Clin Exp Ophthalmol; 2014 May; 252(5):723-9. PubMed ID: 24281784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.