These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36537011)

  • 1. Synergistic Combination of Fermi Level Equilibrium and Plasmonic Effect for Formic Acid Dehydrogenation.
    Zhu J; Huang J; Dai J; Jiang L; Xu Y; Chen R; Li L; Fu X; Wang Z; Liu H; Li G
    ChemSusChem; 2023 Mar; 16(6):e202202069. PubMed ID: 36537011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron nitride nanosheets supported highly homogeneous bimetallic AuPd alloy nanoparticles catalyst for hydrogen production from formic acid.
    Shaybanizadeh S; Najafi Chermahini A; Luque R
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35294941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.
    Yu WY; Mullen GM; Flaherty DW; Mullins CB
    J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions.
    Ruiz-López E; Ribota Peláez M; Blasco Ruz M; Domínguez Leal MI; Martínez Tejada M; Ivanova S; Centeno MÁ
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au
    Guo XT; Zhang J; Chi JC; Li ZH; Liu YC; Liu XR; Zhang SY
    RSC Adv; 2019 Feb; 9(11):5995-6002. PubMed ID: 35517262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO
    Faroldi B; Paviotti MA; Camino-Manjarrés M; González-Carrazán S; López-Olmos C; Rodríguez-Ramos I
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast relaxation dynamics in bimetallic plasmonic catalysts.
    Sim S; Beierle A; Mantos P; McCrory S; Prasankumar RP; Chowdhury S
    Nanoscale; 2020 May; 12(18):10284-10291. PubMed ID: 32363371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the role of Pd catalyst morphology and deposition criteria over large area plasmonic metasurfaces during light-enhanced electrochemical oxidation of formic acid.
    Yalavarthi R; Henrotte O; Kment Š; Naldoni A
    J Chem Phys; 2022 Sep; 157(11):114706. PubMed ID: 36137800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts.
    Han S; Mullins CB
    Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid.
    Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q
    Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anchoring Pt Single Atoms on Te Nanowires for Plasmon-Enhanced Dehydrogenation of Formic Acid at Room Temperature.
    Han L; Zhang L; Wu H; Zu H; Cui P; Guo J; Guo R; Ye J; Zhu J; Zheng X; Yang L; Zhong Y; Liang S; Wang L
    Adv Sci (Weinh); 2019 Jun; 6(12):1900006. PubMed ID: 31380161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon.
    Zhu L; Liang Y; Sun L; Wang J; Xu D
    Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.