BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36537206)

  • 1. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria.
    Hsieh SC; Peters JE
    Nucleic Acids Res; 2023 Jan; 51(2):765-782. PubMed ID: 36537206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural and Engineered Guide RNA-directed Transposition with CRISPR-Associated Tn7-like Transposons.
    Hsieh SC; Peters JE
    Annu Rev Biochem; 2024 Apr; ():. PubMed ID: 38598855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons.
    Petassi MT; Hsieh SC; Peters JE
    Cell; 2020 Dec; 183(7):1757-1771.e18. PubMed ID: 33271061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of CRISPR-Cas systems by Tn7-like transposons.
    Peters JE; Makarova KS; Shmakov S; Koonin EV
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7358-E7366. PubMed ID: 28811374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metagenomic discovery of CRISPR-associated transposons.
    Rybarski JR; Hu K; Hill AM; Wilke CO; Finkelstein IJ
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34845024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
    Klompe SE; Jaber N; Beh LY; Mohabir JT; Bernheim A; Sternberg SH
    Mol Cell; 2022 Feb; 82(3):616-628.e5. PubMed ID: 35051352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
    Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH
    Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond.
    Peters JE
    Mol Microbiol; 2019 Dec; 112(6):1635-1644. PubMed ID: 31502713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-guided DNA insertion with CRISPR-associated transposases.
    Strecker J; Ladha A; Gardner Z; Schmid-Burgk JL; Makarova KS; Koonin EV; Zhang F
    Science; 2019 Jul; 365(6448):48-53. PubMed ID: 31171706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector.
    Wang S; Gabel C; Siddique R; Klose T; Chang L
    Cell; 2023 Sep; 186(19):4204-4215.e19. PubMed ID: 37557170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition.
    Xiao R; Wang S; Han R; Li Z; Gabel C; Mukherjee IA; Chang L
    Mol Cell; 2021 Nov; 81(21):4457-4466.e5. PubMed ID: 34450043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of diverse type I-F CRISPR-associated transposons.
    Roberts A; Nethery MA; Barrangou R
    Nucleic Acids Res; 2022 Nov; 50(20):11670-11681. PubMed ID: 36384163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual modes of CRISPR-associated transposon homing.
    Saito M; Ladha A; Strecker J; Faure G; Neumann E; Altae-Tran H; Macrae RK; Zhang F
    Cell; 2021 Apr; 184(9):2441-2453.e18. PubMed ID: 33770501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the assembly of the type V CRISPR-associated transposon complex.
    Schmitz M; Querques I; Oberli S; Chanez C; Jinek M
    Cell; 2022 Dec; 185(26):4999-5010.e17. PubMed ID: 36435179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transposition.
    Park JU; Petassi MT; Hsieh SC; Mehrotra E; Schuler G; Budhathoki J; Truong VH; Thyme SB; Ke A; Kellogg EH; Peters JE
    Mol Cell; 2023 Jun; 83(11):1827-1838.e6. PubMed ID: 37267904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system.
    Alalmaie A; Diaf S; Khashan R
    J Genet Eng Biotechnol; 2023 May; 21(1):60. PubMed ID: 37191877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cargo Genes of Tn
    Benler S; Faure G; Altae-Tran H; Shmakov S; Zheng F; Koonin E
    mBio; 2021 Dec; 12(6):e0293821. PubMed ID: 34872347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species.
    McDonald ND; Regmi A; Morreale DP; Borowski JD; Boyd EF
    BMC Genomics; 2019 Feb; 20(1):105. PubMed ID: 30717668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.