These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 36537216)

  • 1. The histone acetyltransferase KAT6A is recruited to unmethylated CpG islands via a DNA binding winged helix domain.
    Weber LM; Jia Y; Stielow B; Gisselbrecht SS; Cao Y; Ren Y; Rohner I; King J; Rothman E; Fischer S; Simon C; Forné I; Nist A; Stiewe T; Bulyk ML; Wang Z; Liefke R
    Nucleic Acids Res; 2023 Jan; 51(2):574-594. PubMed ID: 36537216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain.
    Becht DC; Klein BJ; Kanai A; Jang SM; Cox KL; Zhou BR; Phanor SK; Zhang Y; Chen RW; Ebmeier CC; Lachance C; Galloy M; Fradet-Turcotte A; Bulyk ML; Bai Y; Poirier MG; Côté J; Yokoyama A; Kutateladze TG
    Nat Commun; 2023 Feb; 14(1):697. PubMed ID: 36754959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology.
    Wiesel-Motiuk N; Assaraf YG
    Drug Resist Updat; 2020 Dec; 53():100729. PubMed ID: 33130515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The double PHD finger domain of MOZ/MYST3 induces α-helical structure of the histone H3 tail to facilitate acetylation and methylation sampling and modification.
    Dreveny I; Deeves SE; Fulton J; Yue B; Messmer M; Bhattacharya A; Collins HM; Heery DM
    Nucleic Acids Res; 2014 Jan; 42(2):822-35. PubMed ID: 24150941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway.
    Sheikh BN; Phipson B; El-Saafin F; Vanyai HK; Downer NL; Bird MJ; Kueh AJ; May RE; Smyth GK; Voss AK; Thomas T
    Oncogene; 2015 Nov; 34(47):5807-20. PubMed ID: 25772242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity.
    Lalonde ME; Avvakumov N; Glass KC; Joncas FH; Saksouk N; Holliday M; Paquet E; Yan K; Tong Q; Klein BJ; Tan S; Yang XJ; Kutateladze TG; Côté J
    Genes Dev; 2013 Sep; 27(18):2009-24. PubMed ID: 24065767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem PHD fingers of MORF/MOZ acetyltransferases display selectivity for acetylated histone H3 and are required for the association with chromatin.
    Ali M; Yan K; Lalonde ME; Degerny C; Rothbart SB; Strahl BD; Côté J; Yang XJ; Kutateladze TG
    J Mol Biol; 2012 Dec; 424(5):328-38. PubMed ID: 23063713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay.
    Arboleda VA; Lee H; Dorrani N; Zadeh N; Willis M; Macmurdo CF; Manning MA; Kwan A; Hudgins L; Barthelemy F; Miceli MC; Quintero-Rivera F; Kantarci S; Strom SP; Deignan JL; ; Grody WW; Vilain E; Nelson SF
    Am J Hum Genet; 2015 Mar; 96(3):498-506. PubMed ID: 25728775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human monocytic leukemia zinc finger histone acetyltransferase domain contains DNA-binding activity implicated in chromatin targeting.
    Holbert MA; Sikorski T; Carten J; Snowflack D; Hodawadekar S; Marmorstein R
    J Biol Chem; 2007 Dec; 282(50):36603-13. PubMed ID: 17925393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth.
    Baell JB; Leaver DJ; Hermans SJ; Kelly GL; Brennan MS; Downer NL; Nguyen N; Wichmann J; McRae HM; Yang Y; Cleary B; Lagiakos HR; Mieruszynski S; Pacini G; Vanyai HK; Bergamasco MI; May RE; Davey BK; Morgan KJ; Sealey AJ; Wang B; Zamudio N; Wilcox S; Garnham AL; Sheikh BN; Aubrey BJ; Doggett K; Chung MC; de Silva M; Bentley J; Pilling P; Hattarki M; Dolezal O; Dennis ML; Falk H; Ren B; Charman SA; White KL; Rautela J; Newbold A; Hawkins ED; Johnstone RW; Huntington ND; Peat TS; Heath JK; Strasser A; Parker MW; Smyth GK; Street IP; Monahan BJ; Voss AK; Thomas T
    Nature; 2018 Aug; 560(7717):253-257. PubMed ID: 30069049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2.
    Xiong X; Panchenko T; Yang S; Zhao S; Yan P; Zhang W; Xie W; Li Y; Zhao Y; Allis CD; Li H
    Nat Chem Biol; 2016 Dec; 12(12):1111-1118. PubMed ID: 27775714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals.
    Voss AK; Thomas T
    Bioessays; 2018 Oct; 40(10):e1800078. PubMed ID: 30144132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity.
    Voss AK; Collin C; Dixon MP; Thomas T
    Dev Cell; 2009 Nov; 17(5):674-86. PubMed ID: 19922872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The scaffolding protein JADE1 physically links the acetyltransferase subunit HBO1 with its histone H3-H4 substrate.
    Han J; Lachance C; Ricketts MD; McCullough CE; Gerace M; Black BE; Côté J; Marmorstein R
    J Biol Chem; 2018 Mar; 293(12):4498-4509. PubMed ID: 29382722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SAM domain-containing protein 1 (SAMD1) acts as a repressive chromatin regulator at unmethylated CpG islands.
    Stielow B; Zhou Y; Cao Y; Simon C; Pogoda HM; Jiang J; Ren Y; Phanor SK; Rohner I; Nist A; Stiewe T; Hammerschmidt M; Shi Y; Bulyk ML; Wang Z; Liefke R
    Sci Adv; 2021 May; 7(20):. PubMed ID: 33980486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation.
    Yan K; Rousseau J; Littlejohn RO; Kiss C; Lehman A; Rosenfeld JA; Stumpel CTR; Stegmann APA; Robak L; Scaglia F; Nguyen TTM; Fu H; Ajeawung NF; Camurri MV; Li L; Gardham A; Panis B; Almannai M; Sacoto MJG; Baskin B; Ruivenkamp C; Xia F; Bi W; ; ; Cho MT; Potjer TP; Santen GWE; Parker MJ; Canham N; McKinnon M; Potocki L; MacKenzie JJ; Roeder ER; Campeau PM; Yang XJ
    Am J Hum Genet; 2017 Jan; 100(1):91-104. PubMed ID: 27939640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster.
    Singh M; Spendlove SJ; Wei A; Bondhus LM; Nava AA; de L Vitorino FN; Amano S; Lee J; Echeverria G; Gomez D; Garcia BA; Arboleda VA
    Hum Genet; 2023 Dec; 142(12):1705-1720. PubMed ID: 37861717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes.
    Klein BJ; Lalonde ME; Côté J; Yang XJ; Kutateladze TG
    Epigenetics; 2014 Feb; 9(2):186-93. PubMed ID: 24169304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pantothenate and L-Carnitine Supplementation Improves Pathological Alterations in Cellular Models of KAT6A Syndrome.
    Munuera-Cabeza M; Álvarez-Córdoba M; Suárez-Rivero JM; Povea-Cabello S; Villalón-García I; Talaverón-Rey M; Suárez-Carrillo A; Reche-López D; Cilleros-Holgado P; Piñero-Pérez R; Sánchez-Alcázar JA
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth.
    Zhu J; Sammons MA; Donahue G; Dou Z; Vedadi M; Getlik M; Barsyte-Lovejoy D; Al-awar R; Katona BW; Shilatifard A; Huang J; Hua X; Arrowsmith CH; Berger SL
    Nature; 2015 Sep; 525(7568):206-11. PubMed ID: 26331536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.