BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36537216)

  • 1. The histone acetyltransferase KAT6A is recruited to unmethylated CpG islands via a DNA binding winged helix domain.
    Weber LM; Jia Y; Stielow B; Gisselbrecht SS; Cao Y; Ren Y; Rohner I; King J; Rothman E; Fischer S; Simon C; Forné I; Nist A; Stiewe T; Bulyk ML; Wang Z; Liefke R
    Nucleic Acids Res; 2023 Jan; 51(2):574-594. PubMed ID: 36537216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain.
    Becht DC; Klein BJ; Kanai A; Jang SM; Cox KL; Zhou BR; Phanor SK; Zhang Y; Chen RW; Ebmeier CC; Lachance C; Galloy M; Fradet-Turcotte A; Bulyk ML; Bai Y; Poirier MG; Côté J; Yokoyama A; Kutateladze TG
    Nat Commun; 2023 Feb; 14(1):697. PubMed ID: 36754959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology.
    Wiesel-Motiuk N; Assaraf YG
    Drug Resist Updat; 2020 Dec; 53():100729. PubMed ID: 33130515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The double PHD finger domain of MOZ/MYST3 induces α-helical structure of the histone H3 tail to facilitate acetylation and methylation sampling and modification.
    Dreveny I; Deeves SE; Fulton J; Yue B; Messmer M; Bhattacharya A; Collins HM; Heery DM
    Nucleic Acids Res; 2014 Jan; 42(2):822-35. PubMed ID: 24150941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway.
    Sheikh BN; Phipson B; El-Saafin F; Vanyai HK; Downer NL; Bird MJ; Kueh AJ; May RE; Smyth GK; Voss AK; Thomas T
    Oncogene; 2015 Nov; 34(47):5807-20. PubMed ID: 25772242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity.
    Lalonde ME; Avvakumov N; Glass KC; Joncas FH; Saksouk N; Holliday M; Paquet E; Yan K; Tong Q; Klein BJ; Tan S; Yang XJ; Kutateladze TG; Côté J
    Genes Dev; 2013 Sep; 27(18):2009-24. PubMed ID: 24065767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem PHD fingers of MORF/MOZ acetyltransferases display selectivity for acetylated histone H3 and are required for the association with chromatin.
    Ali M; Yan K; Lalonde ME; Degerny C; Rothbart SB; Strahl BD; Côté J; Yang XJ; Kutateladze TG
    J Mol Biol; 2012 Dec; 424(5):328-38. PubMed ID: 23063713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay.
    Arboleda VA; Lee H; Dorrani N; Zadeh N; Willis M; Macmurdo CF; Manning MA; Kwan A; Hudgins L; Barthelemy F; Miceli MC; Quintero-Rivera F; Kantarci S; Strom SP; Deignan JL; ; Grody WW; Vilain E; Nelson SF
    Am J Hum Genet; 2015 Mar; 96(3):498-506. PubMed ID: 25728775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human monocytic leukemia zinc finger histone acetyltransferase domain contains DNA-binding activity implicated in chromatin targeting.
    Holbert MA; Sikorski T; Carten J; Snowflack D; Hodawadekar S; Marmorstein R
    J Biol Chem; 2007 Dec; 282(50):36603-13. PubMed ID: 17925393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth.
    Baell JB; Leaver DJ; Hermans SJ; Kelly GL; Brennan MS; Downer NL; Nguyen N; Wichmann J; McRae HM; Yang Y; Cleary B; Lagiakos HR; Mieruszynski S; Pacini G; Vanyai HK; Bergamasco MI; May RE; Davey BK; Morgan KJ; Sealey AJ; Wang B; Zamudio N; Wilcox S; Garnham AL; Sheikh BN; Aubrey BJ; Doggett K; Chung MC; de Silva M; Bentley J; Pilling P; Hattarki M; Dolezal O; Dennis ML; Falk H; Ren B; Charman SA; White KL; Rautela J; Newbold A; Hawkins ED; Johnstone RW; Huntington ND; Peat TS; Heath JK; Strasser A; Parker MW; Smyth GK; Street IP; Monahan BJ; Voss AK; Thomas T
    Nature; 2018 Aug; 560(7717):253-257. PubMed ID: 30069049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2.
    Xiong X; Panchenko T; Yang S; Zhao S; Yan P; Zhang W; Xie W; Li Y; Zhao Y; Allis CD; Li H
    Nat Chem Biol; 2016 Dec; 12(12):1111-1118. PubMed ID: 27775714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals.
    Voss AK; Thomas T
    Bioessays; 2018 Oct; 40(10):e1800078. PubMed ID: 30144132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity.
    Voss AK; Collin C; Dixon MP; Thomas T
    Dev Cell; 2009 Nov; 17(5):674-86. PubMed ID: 19922872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The scaffolding protein JADE1 physically links the acetyltransferase subunit HBO1 with its histone H3-H4 substrate.
    Han J; Lachance C; Ricketts MD; McCullough CE; Gerace M; Black BE; Côté J; Marmorstein R
    J Biol Chem; 2018 Mar; 293(12):4498-4509. PubMed ID: 29382722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SAM domain-containing protein 1 (SAMD1) acts as a repressive chromatin regulator at unmethylated CpG islands.
    Stielow B; Zhou Y; Cao Y; Simon C; Pogoda HM; Jiang J; Ren Y; Phanor SK; Rohner I; Nist A; Stiewe T; Hammerschmidt M; Shi Y; Bulyk ML; Wang Z; Liefke R
    Sci Adv; 2021 May; 7(20):. PubMed ID: 33980486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation.
    Yan K; Rousseau J; Littlejohn RO; Kiss C; Lehman A; Rosenfeld JA; Stumpel CTR; Stegmann APA; Robak L; Scaglia F; Nguyen TTM; Fu H; Ajeawung NF; Camurri MV; Li L; Gardham A; Panis B; Almannai M; Sacoto MJG; Baskin B; Ruivenkamp C; Xia F; Bi W; ; ; Cho MT; Potjer TP; Santen GWE; Parker MJ; Canham N; McKinnon M; Potocki L; MacKenzie JJ; Roeder ER; Campeau PM; Yang XJ
    Am J Hum Genet; 2017 Jan; 100(1):91-104. PubMed ID: 27939640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KAT6A mutations in Arboleda-Tham syndrome drive epigenetic regulation of posterior HOXC cluster.
    Singh M; Spendlove SJ; Wei A; Bondhus LM; Nava AA; de L Vitorino FN; Amano S; Lee J; Echeverria G; Gomez D; Garcia BA; Arboleda VA
    Hum Genet; 2023 Dec; 142(12):1705-1720. PubMed ID: 37861717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes.
    Klein BJ; Lalonde ME; Côté J; Yang XJ; Kutateladze TG
    Epigenetics; 2014 Feb; 9(2):186-93. PubMed ID: 24169304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pantothenate and L-Carnitine Supplementation Improves Pathological Alterations in Cellular Models of KAT6A Syndrome.
    Munuera-Cabeza M; Álvarez-Córdoba M; Suárez-Rivero JM; Povea-Cabello S; Villalón-García I; Talaverón-Rey M; Suárez-Carrillo A; Reche-López D; Cilleros-Holgado P; Piñero-Pérez R; Sánchez-Alcázar JA
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth.
    Zhu J; Sammons MA; Donahue G; Dou Z; Vedadi M; Getlik M; Barsyte-Lovejoy D; Al-awar R; Katona BW; Shilatifard A; Huang J; Hua X; Arrowsmith CH; Berger SL
    Nature; 2015 Sep; 525(7568):206-11. PubMed ID: 26331536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.