These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 36537693)
1. Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation. Luo B; Schaub A; Glas I; Klein LK; David SC; Bluvshtein N; Violaki K; Motos G; Pohl MO; Hugentobler W; Nenes A; Krieger UK; Stertz S; Peter T; Kohn T Environ Sci Technol; 2023 Jan; 57(1):486-497. PubMed ID: 36537693 [TBL] [Abstract][Full Text] [Related]
2. Inactivation mechanisms of influenza A virus under pH conditions encountered in aerosol particles as revealed by whole-virus HDX-MS. David SC; Vadas O; Glas I; Schaub A; Luo B; D'angelo G; Montoya JP; Bluvshtein N; Hugentobler W; Klein LK; Motos G; Pohl M; Violaki K; Nenes A; Krieger UK; Stertz S; Peter T; Kohn T mSphere; 2023 Oct; 8(5):e0022623. PubMed ID: 37594288 [TBL] [Abstract][Full Text] [Related]
3. Expiratory Aerosol pH is a Driver of the Persistence of Airborne Influenza A Virus. Schaub A Chimia (Aarau); 2023 Apr; 77(4):196-200. PubMed ID: 38047795 [TBL] [Abstract][Full Text] [Related]
4. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses' Viability and Indoor Transmission. Ahlawat A; Mishra SK; Herrmann H; Rajeev P; Gupta T; Goel V; Sun Y; Wiedensohler A Viruses; 2022 Jul; 14(7):. PubMed ID: 35891477 [TBL] [Abstract][Full Text] [Related]
5. Detection of Airborne Influenza A and SARS-CoV-2 Virus Shedding following Ocular Inoculation of Ferrets. Belser JA; Sun X; Kieran TJ; Brock N; Pulit-Penaloza JA; Pappas C; Basu Thakur P; Jones J; Wentworth DE; Zhou B; Tumpey TM; Maines TR J Virol; 2022 Dec; 96(24):e0140322. PubMed ID: 36448801 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of airborne influenza A viruses indoors and dependence on humidity. Yang W; Marr LC PLoS One; 2011; 6(6):e21481. PubMed ID: 21731764 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room. Coyle JP; Derk RC; Lindsley WG; Blachere FM; Boots T; Lemons AR; Martin SB; Mead KR; Fotta SA; Reynolds JS; McKinney WG; Sinsel EW; Beezhold DH; Noti JD Viruses; 2021 Dec; 13(12):. PubMed ID: 34960804 [TBL] [Abstract][Full Text] [Related]
8. Simulating near-field enhancement in transmission of airborne viruses with a quadrature-based model. Fierce L; Robey AJ; Hamilton C Indoor Air; 2021 Nov; 31(6):1843-1859. PubMed ID: 34297863 [TBL] [Abstract][Full Text] [Related]
9. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Nair AN; Anand P; George A; Mondal N Environ Res; 2022 Oct; 213():113579. PubMed ID: 35714688 [TBL] [Abstract][Full Text] [Related]
10. Infectious SARS-CoV-2 Is Emitted in Aerosol Particles. Hawks SA; Prussin AJ; Kuchinsky SC; Pan J; Marr LC; Duggal NK mBio; 2021 Oct; 12(5):e0252721. PubMed ID: 34663099 [TBL] [Abstract][Full Text] [Related]
11. [Ventilation concepts in schools for the prevention of transmission of highly infectious viruses (SARS-CoV-2) by aerosols in indoor air]. Birmili W; Selinka HC; Moriske HJ; Daniels A; Straff W Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2021 Dec; 64(12):1570-1580. PubMed ID: 34739549 [TBL] [Abstract][Full Text] [Related]
12. Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Peng Z; Rojas ALP; Kropff E; Bahnfleth W; Buonanno G; Dancer SJ; Kurnitski J; Li Y; Loomans MGLC; Marr LC; Morawska L; Nazaroff W; Noakes C; Querol X; Sekhar C; Tellier R; Greenhalgh T; Bourouiba L; Boerstra A; Tang JW; Miller SL; Jimenez JL Environ Sci Technol; 2022 Jan; 56(2):1125-1137. PubMed ID: 34985868 [TBL] [Abstract][Full Text] [Related]
13. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Oswin HP; Haddrell AE; Otero-Fernandez M; Mann JFS; Cogan TA; Hilditch TG; Tian J; Hardy DA; Hill DJ; Finn A; Davidson AD; Reid JP Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2200109119. PubMed ID: 35763573 [TBL] [Abstract][Full Text] [Related]
14. Are photocatalytic processes effective for removal of airborne viruses from indoor air? A narrative review. Poormohammadi A; Bashirian S; Rahmani AR; Azarian G; Mehri F Environ Sci Pollut Res Int; 2021 Aug; 28(32):43007-43020. PubMed ID: 34128162 [TBL] [Abstract][Full Text] [Related]
15. Direct and quantitative capture of viable bacteriophages from experimentally contaminated indoor air: A model for the study of airborne vertebrate viruses including SARS-CoV-2. Zargar B; Sattar SA; Kibbee R; Rubino J; Khalid Ijaz M J Appl Microbiol; 2022 Feb; 132(2):1489-1495. PubMed ID: 34411388 [TBL] [Abstract][Full Text] [Related]
16. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Kohanski MA; Lo LJ; Waring MS Int Forum Allergy Rhinol; 2020 Oct; 10(10):1173-1179. PubMed ID: 32652898 [TBL] [Abstract][Full Text] [Related]
17. Aerosol Dynamics Model for Estimating the Risk from Short-Range Airborne Transmission and Inhalation of Expiratory Droplets of SARS-CoV-2. Dhawan S; Biswas P Environ Sci Technol; 2021 Jul; 55(13):8987-8999. PubMed ID: 34132519 [TBL] [Abstract][Full Text] [Related]
18. A guideline to limit indoor airborne transmission of COVID-19. Bazant MZ; Bush JWM Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33858987 [TBL] [Abstract][Full Text] [Related]
20. On the concentration of SARS-CoV-2 in outdoor air and the interaction with pre-existing atmospheric particles. Belosi F; Conte M; Gianelle V; Santachiara G; Contini D Environ Res; 2021 Feb; 193():110603. PubMed ID: 33307081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]