These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36537826)
1. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion. Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826 [TBL] [Abstract][Full Text] [Related]
2. State of the art in parallel ankle rehabilitation robot: a systematic review. Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757 [TBL] [Abstract][Full Text] [Related]
3. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation. Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645 [TBL] [Abstract][Full Text] [Related]
4. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related]
5. [Kinematics analysis and scale optimization of four degree of freedom generalized spherical parallel mechanism for ankle joint rehabilitation]. Liu X; Zhang J; Liu C; Niu J; Qi K; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):286-294. PubMed ID: 33913288 [TBL] [Abstract][Full Text] [Related]
6. Recognizing Continuous Multiple Degrees of Freedom Foot Movements With Inertial Sensors. Zhu C; Luo L; Mai J; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2022; 30():431-440. PubMed ID: 35130162 [TBL] [Abstract][Full Text] [Related]
7. Robot Assisted Ankle Neuro-Rehabilitation: State of the art and Future Challenges. Hussain S; Jamwal PK; Vliet PV; Brown NAT Expert Rev Neurother; 2021 Jan; 21(1):111-121. PubMed ID: 33198522 [No Abstract] [Full Text] [Related]
8. A review on the mechanical design elements of ankle rehabilitation robot. Khalid YM; Gouwanda D; Parasuraman S Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442 [TBL] [Abstract][Full Text] [Related]
9. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot. Zou Y; Zhang A; Zhang Q; Zhang B; Wu X; Qin T Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744564 [TBL] [Abstract][Full Text] [Related]
10. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism. Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953 [TBL] [Abstract][Full Text] [Related]
11. Design framework for a simple robotic ankle evaluation and rehabilitation device. Syrseloudis CE; Emiris IZ; Maganaris CN; Lilas TE Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4310-3. PubMed ID: 19163666 [TBL] [Abstract][Full Text] [Related]
12. A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot. Zeng X; Zhu G; Yue L; Zhang M; Xie S J Healthc Eng; 2017; 2017():6819056. PubMed ID: 29075429 [TBL] [Abstract][Full Text] [Related]
13. Review on design and control aspects of ankle rehabilitation robots. Jamwal PK; Hussain S; Xie SQ Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195 [TBL] [Abstract][Full Text] [Related]
14. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406 [TBL] [Abstract][Full Text] [Related]
15. Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot. Dong M; Kong Y; Li J; Fan W J Healthc Eng; 2020; 2020():3053629. PubMed ID: 32963748 [TBL] [Abstract][Full Text] [Related]
16. Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis. Zhang C; Zhu Y; Fan J; Zhao J; Yu H Biomed Mater Eng; 2015; 26 Suppl 1():S647-54. PubMed ID: 26406060 [TBL] [Abstract][Full Text] [Related]
17. Mathematical Analysis and Motion Capture System Utilization Method for Standardization Evaluation of Tracking Objectivity of 6-DOF Arm Structure for Rehabilitation Training Exercise Therapy Robot. Seol J; Yoon K; Kim KG Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553186 [TBL] [Abstract][Full Text] [Related]
18. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation. Zhang M; Meng W; Davies TC; Zhang Y; Xie SQ IEEE Trans Biomed Eng; 2016 Apr; 63(4):814-21. PubMed ID: 26340767 [TBL] [Abstract][Full Text] [Related]
19. Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework. Abu-Dakka FJ; Valera A; Escalera JA; Abderrahim M; Page A; Mata V Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142669 [TBL] [Abstract][Full Text] [Related]
20. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]