These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36537826)

  • 21. Robot-assisted ankle rehabilitation: a review.
    Alvarez-Perez MG; Garcia-Murillo MA; Cervantes-Sánchez JJ
    Disabil Rehabil Assist Technol; 2020 May; 15(4):394-408. PubMed ID: 30856032
    [No Abstract]   [Full Text] [Related]  

  • 22. The effect of the 2-UPS/RR ankle rehabilitation robot with coupling biomechanical model on muscle behaviors.
    Shengxian Y; Zongxing L; Jing W; Lin G
    Med Biol Eng Comput; 2023 Feb; 61(2):421-434. PubMed ID: 36459326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research on Theory and a Performance Analysis of an Innovative Rehabilitation Robot.
    Wu J; Liu Y; Zhao J; Zang X; Guan Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research on an ankle rehabilitation robot for hemiplegic patients after stroke.
    Sun Z; Mu A; Wang C; Liu Q; Hao F; Wei J; Li W
    Proc Inst Mech Eng H; 2023 Oct; 237(10):1177-1189. PubMed ID: 37706474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.
    Jamwal PK; Hussain S; Tsoi YH; Ghayesh MH; Xie SQ
    Clin Biomech (Bristol, Avon); 2017 May; 44():75-82. PubMed ID: 28351736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A New Trajectory Determination Method for Robot-Assisted Ankle Ligament Rehabilitation.
    Liu Z; Zhong B; Zhong W; Guo K; Zhang M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5390-5393. PubMed ID: 31947074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of three-dimensional motion measuring device for the human ankle joint by using parallel link mechanism.
    Yonezawa T; Onodera T; Ming Ding ; Mizoguchi H; Takemura H; Ogitsu T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4358-61. PubMed ID: 25570957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Preliminary Study on Current Research Status and Clinical Application of Lower Limb Rehabilitation Robot Mechanisms].
    Gao C; Liu F; Jiang H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jan; 48(1):30-37. PubMed ID: 38384214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A real-time computational model for estimating kinematics of ankle ligaments.
    Zhang M; Davies TC; Zhang Y; Xie SQ
    Comput Methods Biomech Biomed Engin; 2016; 19(8):835-44. PubMed ID: 26252861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of the assistive performance of an ankle exerciser using electromyographic signals.
    Saglia JA; Tsagarakis NG; Dai JS; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5854-8. PubMed ID: 21096923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of the passive stiffness of ankle joint in 3 DOF using stewart platform type ankle foot device.
    Nomura K; Yonezawa T; Mizoguchi H; Takemura H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5011-5014. PubMed ID: 28269394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism.
    Wang C; Wang L; Wang T; Li H; Du W; Meng F; Zhang W
    Appl Bionics Biomech; 2019; 2019():7071064. PubMed ID: 31396290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematics and workspace analysis of 4SPRR-SPR parallel robots.
    Luo L; Hou L; Zhang Q; Wei Y; Wu Y
    PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation.
    Meng Q; Liu G; Xu X; Meng Q; Qin L; Yu H
    Front Bioeng Biotechnol; 2023; 11():1323645. PubMed ID: 38076434
    [No Abstract]   [Full Text] [Related]  

  • 38. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Comfort optimization of a new type of foot mechanism for lower extremity exoskeleton].
    Luan Y; Zhang J; Qi K; Yang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):324-333. PubMed ID: 32329286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.