These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36537826)

  • 41. Robot-aided motion planning for knee joint rehabilitation with two robot-manipulators.
    Pei Y; Kim Y; Obinata G; Genda E; Stefanov D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2495-8. PubMed ID: 24110233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motion Similarity Evaluation between Human and a Tri-Co Robot during Real-Time Imitation with a Trajectory Dynamic Time Warping Model.
    Gong L; Chen B; Xu W; Liu C; Li X; Zhao Z; Zhao L
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An open-source OpenSim® ankle-foot musculoskeletal model for assessment of strains and forces in dense connective tissues.
    Sikidar A; Kalyanasundaram D
    Comput Methods Programs Biomed; 2022 Sep; 224():106994. PubMed ID: 35843077
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy].
    Wang RL; Zhou ZH; Xi YC; Wang QN; Wang NH; Huang Z
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):207-212. PubMed ID: 29643516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR).
    Zhang L; Li J; Dong M; Fang B; Cui Y; Zuo S; Zhang K
    J Healthc Eng; 2019; 2019():4164790. PubMed ID: 31001407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinematic dexterity analysis of human-robot interaction of an upper limb rehabilitation robot.
    Sun Q; Guo S; Zhang L
    Technol Health Care; 2021; 29(5):1029-1045. PubMed ID: 33427698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human-robot coupling dynamic modeling and analysis for upper limb rehabilitation robots.
    Xie Q; Meng Q; Dai Y; Zeng Q; Fan Y; Yu H
    Technol Health Care; 2021; 29(4):709-723. PubMed ID: 33386832
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot.
    Heitzmann DWW; Salami F; De Asha AR; Block J; Putz C; Wolf SI; Alimusaj M
    Gait Posture; 2018 Jul; 64():174-180. PubMed ID: 29913354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm.
    Ji Q; Qian Z; Ren L; Ren L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy.
    Zhang M; Davies TC; Zhang Y; Xie S
    J Rehabil Res Dev; 2014; 51(4):517-34. PubMed ID: 25144166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Model based control of a rehabilitation robot for lower extremities.
    Xie XL; Hou ZG; Li PF; Ji C; Zhang F; Tan M; Wang H; Hu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2263-6. PubMed ID: 21097222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Precision Denavit-Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches.
    Khanesar MA; Yan M; Isa M; Piano S; Branson DT
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and validation of a foot-ankle dynamic simulator with a 6-degree-of-freedom parallel mechanism.
    Wang D; Wang W; Guo Q; Shi G; Zhu G; Wang X; Liu A
    Proc Inst Mech Eng H; 2020 Oct; 234(10):1070-1082. PubMed ID: 32650700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Omnidirectional Continuous Movement Method of Dual-Arm Robot in a Space Station.
    Zhang Z; Wang Z; Zhou Z; Li H; Zhang Q; Zhou Y; Li X; Liu W
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics.
    Zhibin S; Tianyu M; Chao N; Yijun N
    Appl Bionics Biomech; 2018; 2018():2719631. PubMed ID: 29967652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation of Disturbance Recovery Based on MPC and Whole-Body Dynamics Control of Biped Walking.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456320
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and kinematic of a dexterous bioinspired elephant trunk robot with variable diameter.
    Zhou P; Yao J; Wei C; Zhang S; Zhang H; Qi S
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35609564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.