These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36537826)
61. Gamification and Control of Nitinol Based Ankle Rehabilitation Robot. Hau CT; Gouwanda D; Gopalai AA; Low CY; Hanapiah FA Biomimetics (Basel); 2021 Sep; 6(3):. PubMed ID: 34562877 [TBL] [Abstract][Full Text] [Related]
62. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
63. Introduction to a Twin Dual-Axis Robotic Platform for Studies of Lower Limb Biomechanics. Russell JB; Phillips CM; Auer MR; Phan V; Jo K; Save O; Nalam V; Lee H IEEE J Transl Eng Health Med; 2023; 11():282-290. PubMed ID: 37275470 [TBL] [Abstract][Full Text] [Related]
64. Design of a bipedal robot for water running based on a six-linkage mechanism inspired by basilisk lizards. Zhao J; Han J; Ju W; Zhang W; Hou Z; Bian C; Kang R; Dai J; Song Z Bioinspir Biomim; 2024 Aug; 19(5):. PubMed ID: 39013398 [TBL] [Abstract][Full Text] [Related]
65. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints--Part I: Kinematics. Siegler S; Chen J; Schneck CD J Biomech Eng; 1988 Nov; 110(4):364-73. PubMed ID: 3205022 [TBL] [Abstract][Full Text] [Related]
66. Modal-Based Kinematics and Contact Detection of Soft Robots. Chen Y; Wang L; Galloway K; Godage I; Simaan N; Barth E Soft Robot; 2021 Jun; 8(3):298-309. PubMed ID: 32668189 [TBL] [Abstract][Full Text] [Related]
67. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Zuo S; Li J; Dong M; Zhou X; Fan W; Kong Y Front Neurorobot; 2020; 14():9. PubMed ID: 32132917 [TBL] [Abstract][Full Text] [Related]
68. Biomechanical evaluation of a prototype foot/ankle prosthesis. Quesada PM; Pitkin M; Colvin J IEEE Trans Rehabil Eng; 2000 Mar; 8(1):156-9. PubMed ID: 10779119 [TBL] [Abstract][Full Text] [Related]
69. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review. Hussain S; Jamwal PK; Ghayesh MH Proc Inst Mech Eng H; 2017 Dec; 231(12):1224-1234. PubMed ID: 29065774 [TBL] [Abstract][Full Text] [Related]
70. Design and development of platform ankle rehabilitation robot with Shape Memory Alloy based actuator. Hau CT; Gouwanda D; Gopalai AA; Yee LC; Akhtar Binti Hanapiah F Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():946-949. PubMed ID: 29060029 [TBL] [Abstract][Full Text] [Related]
71. Analysis and control of biped robot with variable stiffness ankle joints. Lin Z; Zang X; Zhang X; Liu Y; Heng S Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178 [TBL] [Abstract][Full Text] [Related]
72. Configuration design and correction ability evaluation of a novel external fixator for foot and ankle deformity treated by U osteotomy. Zuo S; Dong M; Li J; Tao C; Ji R Med Biol Eng Comput; 2020 Mar; 58(3):541-558. PubMed ID: 31916075 [TBL] [Abstract][Full Text] [Related]
73. An Ankle-Foot Prosthesis for Rock Climbing Augmentation. Rogers EA; Carney ME; Yeon SH; Clites TR; Solav D; Herr HM IEEE Trans Neural Syst Rehabil Eng; 2021; 29():41-51. PubMed ID: 33095704 [TBL] [Abstract][Full Text] [Related]
74. The modified Shriners Hospitals for Children Greenville (mSHCG) multi-segment foot model provides clinically acceptable measurements of ankle and midfoot angles: A dual fluoroscopy study. Roach KE; Foreman KB; MacWilliams BA; Karpos K; Nichols J; Anderson AE Gait Posture; 2021 Mar; 85():258-265. PubMed ID: 33626450 [TBL] [Abstract][Full Text] [Related]
75. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait. Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083 [TBL] [Abstract][Full Text] [Related]
76. A Human-Following Motion Planning and Control Scheme for Collaborative Robots Based on Human Motion Prediction. Khawaja FI; Kanazawa A; Kinugawa J; Kosuge K Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960323 [TBL] [Abstract][Full Text] [Related]
77. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture. Takeda I; Yamada A; Onodera H Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107 [TBL] [Abstract][Full Text] [Related]
78. Online estimation algorithm for a biaxial ankle kinematic model with configuration dependent joint axes. Tsoi YH; Xie SQ J Biomech Eng; 2011 Feb; 133(2):021005. PubMed ID: 21280877 [TBL] [Abstract][Full Text] [Related]
79. Optimized intelligent control of a 2-degree of freedom robot for rehabilitation of lower limbs using neural network and genetic algorithm. Aminiazar W; Najafi F; Nekoui MA J Neuroeng Rehabil; 2013 Aug; 10():96. PubMed ID: 23945420 [TBL] [Abstract][Full Text] [Related]
80. Policy Design for an Ankle-Foot Orthosis Using Simulated Physical Human-Robot Interaction via Deep Reinforcement Learning. Han JI; Lee JH; Choi HS; Kim JH; Choi J IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2186-2197. PubMed ID: 35925859 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]