These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 36538075)

  • 1. Two-phase model of compressive stress induced on a surrounding hyperelastic medium by an expanding tumour.
    Remesan GC; Flegg JA; Byrne HM
    J Math Biol; 2022 Dec; 86(1):18. PubMed ID: 36538075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids.
    Chen CY; Byrne HM; King JR
    J Math Biol; 2001 Sep; 43(3):191-220. PubMed ID: 11681526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling solid tumour growth using the theory of mixtures.
    Byrne H; Preziosi L
    Math Med Biol; 2003 Dec; 20(4):341-66. PubMed ID: 14969384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of intercellular adhesion in the development of carcinomas.
    Byrne HM
    IMA J Math Appl Med Biol; 1997 Dec; 14(4):305-23. PubMed ID: 9415997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic variation modulates the growth dynamics and response to radiotherapy of solid tumours under normoxia and hypoxia.
    Celora GL; Byrne HM; Zois CE; Kevrekidis PG
    J Theor Biol; 2021 Oct; 527():110792. PubMed ID: 34087269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions.
    Perfahl H; Byrne HM; Chen T; Estrella V; Alarcón T; Lapin A; Gatenby RA; Gillies RJ; Lloyd MC; Maini PK; Reuss M; Owen MR
    PLoS One; 2011 Apr; 6(4):e14790. PubMed ID: 21533234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the morphological stability of multicellular tumour spheroids growing in porous media.
    Giverso C; Ciarletta P
    Eur Phys J E Soft Matter; 2016 Oct; 39(10):92. PubMed ID: 27726037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of mechanical host-tumour interactions in the collapse of tumour blood vessels and tumour growth dynamics.
    Araujo RP; McElwain DL
    J Theor Biol; 2006 Feb; 238(4):817-27. PubMed ID: 16384586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the hyperelastic properties of tissue slices with tumour inclusion.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2008 Dec; 53(24):7087-106. PubMed ID: 19015576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient swelling response of pH-sensitive hydrogels: A monophasic constitutive model and numerical implementation.
    Bayat MR; Dolatabadi R; Baghani M
    Int J Pharm; 2020 Mar; 577():119030. PubMed ID: 31953086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness.
    Shah L; Latif A; Williams KJ; Tirella A
    Acta Biomater; 2022 Oct; 152():273-289. PubMed ID: 36087866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel.
    Aziz AH; Eckstein K; Ferguson VL; Bryant SJ
    J Tissue Eng Regen Med; 2019 Jun; 13(6):946-959. PubMed ID: 30793536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model.
    Faghihi S; Karimi A; Jamadi M; Imani R; Salarian R
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():299-305. PubMed ID: 24656382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hyperelastic-damage model to study the anisotropic mechanical behavior of coral-hydrogel bio-composite.
    Eghbali R; Narooei K
    J Mech Behav Biomed Mater; 2022 Feb; 126():105054. PubMed ID: 34933157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel.
    Zhan Y; Pan Y; Chen B; Lu J; Zhong Z; Niu X
    J Mech Behav Biomed Mater; 2017 Nov; 75():236-243. PubMed ID: 28756284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues.
    Shoham N; Sasson AL; Lin FH; Benayahu D; Haj-Ali R; Gefen A
    J Mech Behav Biomed Mater; 2013 Dec; 28():320-31. PubMed ID: 24021174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphase modelling of vascular tumour growth in two spatial dimensions.
    Hubbard ME; Byrne HM
    J Theor Biol; 2013 Jan; 316():70-89. PubMed ID: 23032218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poroelastic model describing nutrient transport and cell stresses within a cyclically strained collagen hydrogel.
    Vaughan BL; Galie PA; Stegemann JP; Grotberg JB
    Biophys J; 2013 Nov; 105(9):2188-98. PubMed ID: 24209865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion.
    Anderson AR
    Math Med Biol; 2005 Jun; 22(2):163-86. PubMed ID: 15781426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.