These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36538346)

  • 1. Prediction of the Contribution Ratio of a Target Metabolic Enzyme to Clearance from Chemical Structure Information.
    Watanabe R; Kawata T; Ueda S; Shinbo T; Higashimori M; Natsume-Kitatani Y; Mizuguchi K
    Mol Pharm; 2023 Jan; 20(1):419-426. PubMed ID: 36538346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Fraction Metabolized by Cytochrome P450 Enzymes Using Long-Term Cocultured Human Hepatocytes.
    Klammers F; Goetschi A; Ekiciler A; Walter I; Parrott N; Fowler S; Umehara K
    Drug Metab Dispos; 2022 May; 50(5):566-575. PubMed ID: 35246464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of fractions metabolized by hepatic CYP enzymes using a concept of inter-system extrapolation factors (ISEFs) - a comparison with the chemical inhibition method.
    Umehara KI; Huth F; Gu H; Schiller H; Heimbach T; He H
    Drug Metab Pers Ther; 2017 Dec; 32(4):191-200. PubMed ID: 29176011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Property Relationships and Machine Learning Models for Addressing CYP3A4-Mediated Victim Drug-Drug Interaction Risk in Drug Discovery.
    Hu B; Zhou X; Mohutsky MA; Desai PV
    Mol Pharm; 2020 Sep; 17(9):3600-3608. PubMed ID: 32794756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intersystem Extrapolation Factors Are Substrate-Dependent for CYP3A4: Impact on Cytochrome P450 Reaction Phenotyping.
    Dantonio AL; Doran AC; Obach RS
    Drug Metab Dispos; 2022 Mar; 50(3):249-257. PubMed ID: 34903590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing drug-drug Interaction Prediction by Integrating Physiologically-Based Pharmacokinetic Model with Fraction Metabolized by CYP3A4.
    Jiang P; Chen T; Chu LF; Xu RP; Gao JT; Wang L; Liu Q; Tang L; Wan H; Li M; Ren HC
    Expert Opin Drug Metab Toxicol; 2023; 19(10):721-731. PubMed ID: 37746740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CYP3A4 in vitro data to predict clinical drug-drug interactions; predictions of compounds as objects of interaction.
    Youdim KA; Zayed A; Dickins M; Phipps A; Griffiths M; Darekar A; Hyland R; Fahmi O; Hurst S; Plowchalk DR; Cook J; Guo F; Obach RS
    Br J Clin Pharmacol; 2008 May; 65(5):680-92. PubMed ID: 18279465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of in vivo drug-drug interactions from in vitro data : factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4.
    Brown HS; Galetin A; Hallifax D; Houston JB
    Clin Pharmacokinet; 2006; 45(10):1035-50. PubMed ID: 16984215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution.
    Emoto C; Murayama N; Rostami-Hodjegan A; Yamazaki H
    Curr Drug Metab; 2010 Oct; 11(8):678-85. PubMed ID: 20973757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs.
    Ohno Y; Hisaka A; Suzuki H
    Clin Pharmacokinet; 2007; 46(8):681-96. PubMed ID: 17655375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug-drug interaction (DDI) assessments of ruxolitinib, a dual substrate of CYP3A4 and CYP2C9, using a verified physiologically based pharmacokinetic (PBPK) model to support regulatory submissions.
    Umehara K; Huth F; Jin Y; Schiller H; Aslanis V; Heimbach T; He H
    Drug Metab Pers Ther; 2019 May; 34(2):. PubMed ID: 31145690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Use of In Vitro and In Vivo Information for Comprehensive Prediction of Drug Interactions Due to Inhibition of Multiple CYP Isoenzymes.
    Hozuki S; Yoshioka H; Asano S; Nakamura M; Koh S; Shibata Y; Tamemoto Y; Sato H; Hisaka A
    Clin Pharmacokinet; 2023 Jun; 62(6):849-860. PubMed ID: 37076696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative prediction of CYP3A-mediated drug-drug interactions by correctly estimating fraction metabolized using human liver chimeric mice.
    Miyake T; Mochizuki T; Nakagawa T; Nakamura M; Emoto C; Komiyama N; Hirabayashi M; Tsuruta S; Shimojo T; Terao K; Tachibana T
    Br J Pharmacol; 2024 Apr; 181(7):1091-1106. PubMed ID: 37872109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxychloroquine is Metabolized by Cytochrome P450 2D6, 3A4, and 2C8, and Inhibits Cytochrome P450 2D6, while its Metabolites also Inhibit Cytochrome P450 3A
    Paludetto MN; Kurkela M; Kahma H; Backman JT; Niemi M; Filppula AM
    Drug Metab Dispos; 2023 Mar; 51(3):293-305. PubMed ID: 36446607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetics and Drug-Drug Interaction of Ocedurenone (KBP-5074) in vitro and in vivo.
    Wang P; Liu J; Tan X; Yang F; McCabe J; Zhang J
    Eur J Drug Metab Pharmacokinet; 2023 Jul; 48(4):397-410. PubMed ID: 37357226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction phenotyping to assess victim drug-drug interaction risks.
    Di L
    Expert Opin Drug Discov; 2017 Nov; 12(11):1105-1115. PubMed ID: 28820269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling chemical interaction profiles: II. Molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome P450 CYP3A4 isozyme.
    Tie Y; McPhail B; Hong H; Pearce BA; Schnackenberg LK; Ge W; Buzatu DA; Wilkes JG; Fuscoe JC; Tong W; Fowler BA; Beger RD; Demchuk E
    Molecules; 2012 Mar; 17(3):3407-60. PubMed ID: 22421793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information.
    Hisaka A; Ohno Y; Yamamoto T; Suzuki H
    Pharmacol Ther; 2010 Feb; 125(2):230-48. PubMed ID: 19951720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant.
    Brown HS; Ito K; Galetin A; Houston JB
    Br J Clin Pharmacol; 2005 Nov; 60(5):508-18. PubMed ID: 16236041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information.
    Ohno Y; Hisaka A; Ueno M; Suzuki H
    Clin Pharmacokinet; 2008; 47(10):669-80. PubMed ID: 18783297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.