These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36538415)

  • 1. Manganese Oxidation States in Volcanic Soils across Annual Rainfall Gradients.
    Wen K; Chadwick OA; Vitousek PM; Paulus EL; Landrot G; Tappero RV; Kaszuba JP; Luther GW; Wang Z; Reinhart BJ; Zhu M
    Environ Sci Technol; 2023 Jan; 57(1):730-740. PubMed ID: 36538415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils.
    Bhattacharyya A; Campbell AN; Tfaily MM; Lin Y; Kukkadapu RK; Silver WL; Nico PS; Pett-Ridge J
    Environ Sci Technol; 2018 Dec; 52(24):14129-14139. PubMed ID: 30451506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese: The overlooked contaminant in the world largest mine tailings dam collapse.
    Queiroz HM; Ying SC; Abernathy M; Barcellos D; Gabriel FA; Otero XL; Nóbrega GN; Bernardino AF; Ferreira TO
    Environ Int; 2021 Jan; 146():106284. PubMed ID: 33264733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2016 Sep; 50(17):9251-61. PubMed ID: 27508335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the Mechanisms of Fe Oxidation and Mn Reduction on Mn Indicators of Reduction in Soil (IRIS) Films.
    Limmer MA; Linam FA; Evans AE; Seyfferth AL
    Environ Sci Technol; 2023 Apr; 57(16):6530-6539. PubMed ID: 37053498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese-Driven Carbon Oxidation at Oxic-Anoxic Interfaces.
    Jones ME; Nico PS; Ying S; Regier T; Thieme J; Keiluweit M
    Environ Sci Technol; 2018 Nov; 52(21):12349-12357. PubMed ID: 30260632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.
    Shaheen SM; Frohne T; White JR; DeLaune RD; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):131-140. PubMed ID: 27240716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies.
    Chen C; Kukkadapu RK; Lazareva O; Sparks DL
    Environ Sci Technol; 2017 Jul; 51(14):7903-7912. PubMed ID: 28617593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores.
    Martínez CE; Yáñez C; Yoon SJ; Bruns MA
    Environ Sci Technol; 2007 Aug; 41(15):5323-9. PubMed ID: 17822097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yielding hydroxyl radicals in the Fenton-like reaction induced by manganese (II) oxidation determines Cd mobilization upon soil aeration in paddy soil systems.
    Wang M; Liu Y; Shi H; Li S; Chen S
    Environ Pollut; 2022 Jan; 292(Pt A):118311. PubMed ID: 34627964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox dependence of manganese controls cadmium isotope fractionation in a paddy soil-rice system under unsteady pe + pH conditions.
    Wang M; Chen S; Shi H; Liu Y
    Sci Total Environ; 2022 Feb; 806(Pt 2):150675. PubMed ID: 34592283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic oxidation and adsorption of Cr(III) on iron-manganese nodules under oxic conditions.
    Hai J; Liu L; Tan W; Hao R; Qiu G
    J Hazard Mater; 2020 May; 390():122166. PubMed ID: 32004764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using fixed-potential electrodes to quantify iron and manganese redox cycling in upland soils.
    Hodges C; Regan JM; Forsythe B; Oakley D; Kaye J; Brantley SL
    Biogeochemistry; 2023; 162(1):25-42. PubMed ID: 36687142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled Manganese Redox Cycling and Organic Carbon Degradation on Mineral Surfaces.
    Ma D; Wu J; Yang P; Zhu M
    Environ Sci Technol; 2020 Jul; 54(14):8801-8810. PubMed ID: 32551616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogeochemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization.
    Antić-Mladenović S; Frohne T; Kresović M; Stärk HJ; Tomić Z; Ličina V; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):141-150. PubMed ID: 27318758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox chemistry of nickel in soils and sediments: A review.
    Rinklebe J; Shaheen SM
    Chemosphere; 2017 Jul; 179():265-278. PubMed ID: 28371710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.