BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36538763)

  • 21. Metal Ion Interactions with mAbs: Part 2. Zinc-Mediated Aggregation of IgG1 Monoclonal Antibodies.
    Mehta S; Flores H; Walters B; Sreedhara A
    Pharm Res; 2021 Aug; 38(8):1387-1395. PubMed ID: 34382142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Dynamics Simulation of an Iron(III) Binding Site on the Fc Domain of IgG1 Relevant for Visible Light-Induced Protein Fragmentation.
    Lou H; Zhang Y; Kuczera K; Hageman MJ; Schöneich C
    Mol Pharm; 2024 Feb; 21(2):501-512. PubMed ID: 38128475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a novel modification to monoclonal antibodies: thioether cross-link of heavy and light chains.
    Tous GI; Wei Z; Feng J; Bilbulian S; Bowen S; Smith J; Strouse R; McGeehan P; Casas-Finet J; Schenerman MA
    Anal Chem; 2005 May; 77(9):2675-82. PubMed ID: 15859580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acid hydrolysis of monoclonal antibodies.
    Davagnino J; Wong C; Shelton L; Mankarious S
    J Immunol Methods; 1995 Sep; 185(2):177-80. PubMed ID: 7561127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near UV and Visible Light Photo-Degradation Mechanisms in Citrate Buffer: One-Electron Reduction of Peptide and Protein Disulfides promotes Oxidation and Cis/Trans Isomerization of Unsaturated Fatty Acids of Polysorbate 80.
    Prajapati I; Subelzu N; Zhang Y; Wu Y; Schöneich C
    J Pharm Sci; 2022 Apr; 111(4):991-1003. PubMed ID: 35108563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the Increased Aggregation Propensity of a Light-Exposed IgG1 Monoclonal Antibody Using Hydrogen Exchange Mass Spectrometry, Biophysical Characterization, and Structural Analysis.
    Bommana R; Chai Q; Schöneich C; Weiss WF; Majumdar R
    J Pharm Sci; 2018 Jun; 107(6):1498-1511. PubMed ID: 29408480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fragmentation of a Monoclonal Antibody by Peroxotungstate.
    Rathnayaka H; Mozziconacci O; Sreedhara A; Schöneich C
    Pharm Res; 2018 Sep; 35(11):219. PubMed ID: 30255209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human IgG1 hinge fragmentation as the result of H2O2-mediated radical cleavage.
    Yan B; Yates Z; Balland A; Kleemann GR
    J Biol Chem; 2009 Dec; 284(51):35390-402. PubMed ID: 19850927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triethylenetetramine prevents insulin aggregation and fragmentation during copper catalyzed oxidation.
    Torosantucci R; Weinbuch D; Klem R; Jiskoot W
    Eur J Pharm Biopharm; 2013 Aug; 84(3):464-71. PubMed ID: 23403016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in human IgG1 and IgG4 S228P monoclonal antibodies viscosity and self-interactions: Experimental assessment and computational predictions of domain interactions.
    Lai PK; Ghag G; Yu Y; Juan V; Fayadat-Dilman L; Trout BL
    MAbs; 2021; 13(1):1991256. PubMed ID: 34747330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies.
    Dada OO; Rao R; Jones N; Jaya N; Salas-Solano O
    J Pharm Biomed Anal; 2017 Oct; 145():91-97. PubMed ID: 28654781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization.
    Ji JA; Zhang B; Cheng W; Wang YJ
    J Pharm Sci; 2009 Dec; 98(12):4485-500. PubMed ID: 19455640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal ion interactions with mAbs: Part 1.
    Glover ZK; Basa L; Moore B; Laurence JS; Sreedhara A
    MAbs; 2015; 7(5):901-11. PubMed ID: 26121230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-induced conversion of Trp to Gly and Gly hydroperoxide in IgG1.
    Haywood J; Mozziconacci O; Allegre KM; Kerwin BA; Schöneich C
    Mol Pharm; 2013 Mar; 10(3):1146-50. PubMed ID: 23363477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional assessment of antibody oxidation by native mass spectrometry.
    Haberger M; Heidenreich AK; Schlothauer T; Hook M; Gassner J; Bomans K; Yegres M; Zwick A; Zimmermann B; Wegele H; Bonnington L; Reusch D; Bulau P
    MAbs; 2015; 7(5):891-900. PubMed ID: 26000623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-UV and Visible Light Degradation of Iron (III)-Containing Citrate Buffer: Formation of Carbon Dioxide Radical Anion via Fragmentation of a Sterically Hindered Alkoxyl Radical.
    Zhang Y; Richards DS; Grotemeyer EN; Jackson TA; Schöneich C
    Mol Pharm; 2022 Nov; 19(11):4026-4042. PubMed ID: 36074094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Buffer-dependent fragmentation of a humanized full-length monoclonal antibody.
    Salinas BA; Sathish HA; Shah AU; Carpenter JF; Randolph TW
    J Pharm Sci; 2010 Jul; 99(7):2962-74. PubMed ID: 20091831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation.
    Schöneich C
    J Pharm Pharmacol; 2018 May; 70(5):655-665. PubMed ID: 28134972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods.
    Li W; Yang B; Zhou D; Xu J; Li W; Suen WC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1048():121-129. PubMed ID: 28242491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific cleavage of histidine-containing peptides by copper(II).
    Allen G; Campbell RO
    Int J Pept Protein Res; 1996 Sep; 48(3):265-73. PubMed ID: 8897094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.