BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36539050)

  • 1. Role of FOXO transcription factors in the tolerance of whole-body freezing in the wood frog, Rana sylvatica.
    Rehman S; Hadj-Moussa H; Hawkins L; Storey KB
    Cryobiology; 2023 Mar; 110():44-48. PubMed ID: 36539050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica.
    Zhang J; Storey KB
    Cell Cycle; 2012 May; 11(9):1727-42. PubMed ID: 22510573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of SMAD transcription factors during freezing in the freeze tolerant wood frog, Rana sylvatica.
    Aguilar OA; Hadj-Moussa H; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Nov; 201():64-71. PubMed ID: 27424790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia inducible factor-1α responds to freezing, anoxia and dehydration stresses in a freeze-tolerant frog.
    Storey JM; Li Z; Storey KB
    Cryobiology; 2023 Mar; 110():79-85. PubMed ID: 36442660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-responsive regulation of MEF2 proteins and downstream gene networks in muscles of the wood frog, Rana sylvatica.
    Aguilar OA; Hadj-Moussa H; Storey KB
    J Therm Biol; 2017 Jul; 67():1-8. PubMed ID: 28558931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step purification and regulation of fructose 1,6-bisphosphatase from the liver of the freeze-tolerant wood frog, Rana sylvatica.
    Varma A; Storey KB
    Cell Biochem Funct; 2022 Jul; 40(5):491-500. PubMed ID: 35604283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of gamma-glutamyltranspeptidase in the liver of the frog: 3. Response to freezing and thawing in the freeze-tolerant wood frog Rana sylvatica.
    Hemmings SJ; Storey KB
    Cell Biochem Funct; 1996 Jun; 14(2):139-48. PubMed ID: 8640954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance.
    Storey KB
    Cryobiology; 2004 Apr; 48(2):134-45. PubMed ID: 15094090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of NF-κB, FHC and SOD2 in response to oxidative stress in the freeze tolerant wood frog, Rana sylvatica.
    Gupta A; Brooks C; Storey KB
    Cryobiology; 2020 Dec; 97():28-36. PubMed ID: 33080279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Status of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in liver and skin of the freeze tolerant wood frog.
    Douglas K; Logan SM; Storey KB
    Cryobiology; 2022 Oct; 108():27-33. PubMed ID: 36100073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains.
    Hadj-Moussa H; Storey KB
    Cell Mol Life Sci; 2018 Oct; 75(19):3635-3647. PubMed ID: 29681008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of carbamoyl phosphate synthetase 1 (CPS1) from wood frog (Rana sylvatica) liver and its regulation in response to ice-nucleation and subsequent whole-body freezing.
    Green SR; Storey KB
    Mol Cell Biochem; 2019 May; 455(1-2):29-39. PubMed ID: 30421312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica.
    Wu CW; Tessier SN; Storey KB
    Cell Stress Chaperones; 2018 Nov; 23(6):1205-1217. PubMed ID: 29951989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-induced suppression of pyruvate kinase in liver of the wood frog (Rana sylvatica).
    Varma A; Storey KB
    Adv Biol Regul; 2023 May; 88():100944. PubMed ID: 36542984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use.
    Sinclair BJ; Stinziano JR; Williams CM; Macmillan HA; Marshall KE; Storey KB
    J Exp Biol; 2013 Jan; 216(Pt 2):292-302. PubMed ID: 23255194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria, metabolic control and microRNA: Advances in understanding amphibian freeze tolerance.
    Storey KB; Storey JM
    Biofactors; 2020 Mar; 46(2):220-228. PubMed ID: 31026112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative damage and antioxidants in Rana sylvatica, the freeze-tolerant wood frog.
    Joanisse DR; Storey KB
    Am J Physiol; 1996 Sep; 271(3 Pt 2):R545-53. PubMed ID: 8853374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA regulation in heart and skeletal muscle over the freeze-thaw cycle in the freeze tolerant wood frog.
    Bansal S; Luu BE; Storey KB
    J Comp Physiol B; 2016 Feb; 186(2):229-41. PubMed ID: 26660652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica.
    Costanzo JP
    J Comp Physiol B; 2019 Feb; 189(1):1-15. PubMed ID: 30390099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Up-regulation of acidic ribosomal phosphoprotein P0 in response to freezing or anoxia in the freeze tolerant wood frog, Rana sylvatica.
    Wu S; Storey KB
    Cryobiology; 2005 Feb; 50(1):71-82. PubMed ID: 15710371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.