These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36539635)

  • 21. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes.
    Yavuz Y; Ögütveren ÜB
    J Environ Manage; 2018 Feb; 207():151-158. PubMed ID: 29161644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the hybrid system combining electrocoagulation, nanofiltration and reverse osmosis for biologically treated textile effluent: Treatment efficiency and membrane fouling.
    Güneş E; Gönder ZB
    J Environ Manage; 2021 Sep; 294():113042. PubMed ID: 34126531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design.
    Mateen QS; Khan SU; Islam DT; Khan NA; Farooqi IH
    Water Environ Res; 2020 Sep; 92(9):1350-1362. PubMed ID: 32198904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization and modelling using the response surface methodology (RSM) for ciprofloxacin removal by electrocoagulation.
    Barışçı S; Turkay O
    Water Sci Technol; 2016; 73(7):1673-9. PubMed ID: 27054740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment.
    Naje AS; Chelliapan S; Zakaria Z; Abbas SA
    J Environ Manage; 2016 Jul; 176():34-44. PubMed ID: 27039362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Waste tea residue adsorption coupled with electrocoagulation for improvement of copper and nickel ions removal from simulated wastewater.
    Jean Claude N; Shanshan L; Khan J; Yifeng W; Dongxu H; Xiangru L
    Sci Rep; 2022 Mar; 12(1):3519. PubMed ID: 35241732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The potential application of bio-based ceramic/organic xerogel derived from the plant sources: A new green adsorbent for removal of antibiotics from pharmaceutical wastewater.
    Arabkhani P; Asfaram A
    J Hazard Mater; 2022 May; 429():128289. PubMed ID: 35121292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrocoagulation removal of Pb, Cd, and Cu ions from wastewater using a new configuration of electrodes.
    AlJaberi FY; Hawaas ZA
    MethodsX; 2023; 10():101951. PubMed ID: 36545545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pollutants removals and energy consumption in electrochemical cell for pulping processes wastewater treatment: Artificial neural network, response surface methodology and kinetic studies.
    Adeogun AI; Bhagawati PB; Shivayogimath CB
    J Environ Manage; 2021 Mar; 281():111897. PubMed ID: 33385904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment vegetable oil refinery wastewater by sequential electrocoagulation-electrooxidation process.
    Saeed OF; Hameed KW; Abbar AH
    J Environ Manage; 2023 Sep; 342():118362. PubMed ID: 37311343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wastewater treatment from the biodiesel production using waste cooking oil by electrocoagulation: a multivariate approach.
    Sari-Erkan H
    Water Sci Technol; 2019 Jun; 79(12):2366-2377. PubMed ID: 31411591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.
    de Carvalho HP; Huang J; Zhao M; Liu G; Yang X; Dong L; Liu X
    Water Sci Technol; 2016; 73(11):2572-82. PubMed ID: 27232392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treatment of cardboard factory wastewater using ozone-assisted electrocoagulation process: optimization through response surface methodology.
    Mehralian M; Khashij M; Dalvand A
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45041-45049. PubMed ID: 33860423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel electrocoagulation electrode configuration for the removal of total organic carbon from primary treated municipal wastewater.
    Hawari AH; Alkhatib AM; Hafiz M; Das P
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):23888-23898. PubMed ID: 32301085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater.
    Gong C; Zhang J; Ren X; He C; Han J; Zhang Z
    Chemosphere; 2022 Sep; 303(Pt 3):135249. PubMed ID: 35691397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of Mn removal from aqueous solutions through electrocoagulation.
    Omranpour Shahreza S; Mokhtarian N; Behnam S
    Environ Technol; 2020 Mar; 41(7):890-900. PubMed ID: 30122127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatment of vinegar industry wastewater by electrocoagulation with monopolar aluminum and iron electrodes and toxicity evaluation.
    Yılmaz S; Gerek EE; Yavuz Y; Koparal AS
    Water Sci Technol; 2018 Dec; 78(12):2542-2552. PubMed ID: 30767919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study.
    Song P; Sun C; Wang J; Ai S; Dong S; Sun J; Sun S
    Chemosphere; 2022 Jan; 287(Pt 1):131971. PubMed ID: 34438208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process.
    Zaied BK; Rashid M; Nasrullah M; Zularisam AW; Pant D; Singh L
    Sci Total Environ; 2020 Jul; 726():138095. PubMed ID: 32481207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defluoridation by positive single-pulse current electrocoagulation from photovoltaic wastewater: Energy consumption assessment and mechanism analysis.
    Wu H; Shi Z; Sun B; Zheng B; Shah KJ; Lin S
    Chemosphere; 2024 Jul; 363():142773. PubMed ID: 38972457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.