These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36539761)

  • 1. Constitutive glucose dehydrogenase elevates intracellular NADPH levels and luciferase luminescence in Bacillus subtilis.
    Wu Y; Kawabata H; Kita K; Ishikawa S; Tanaka K; Yoshida KI
    Microb Cell Fact; 2022 Dec; 21(1):266. PubMed ID: 36539761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis iolU encodes an additional NADP
    Kang DM; Tanaka K; Takenaka S; Ishikawa S; Yoshida KI
    Biosci Biotechnol Biochem; 2017 May; 81(5):1026-1032. PubMed ID: 28043209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of scyllo-Inositol: Conversion of Rice Bran into a Promising Disease-Modifying Therapeutic Agent for Alzheimer's Disease.
    Yoshida KI; Ishikawa S
    J Nutr Sci Vitaminol (Tokyo); 2019; 65(Supplement):S139-S142. PubMed ID: 31619615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis.
    Morinaga T; Ashida H; Yoshida KI
    Microbiology (Reading); 2010 May; 156(Pt 5):1538-1546. PubMed ID: 20133360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production.
    Tanaka K; Natsume A; Ishikawa S; Takenaka S; Yoshida KI
    Microb Cell Fact; 2017 Apr; 16(1):67. PubMed ID: 28431560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer's disease.
    Ramp P; Lehnert A; Matamouros S; Wirtz A; Baumgart M; Bott M
    Metab Eng; 2021 Sep; 67():173-185. PubMed ID: 34224896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bacterial cell factory converting glucose into scyllo-inositol, a therapeutic agent for Alzheimer's disease.
    Michon C; Kang CM; Karpenko S; Tanaka K; Ishikawa S; Yoshida KI
    Commun Biol; 2020 Mar; 3(1):93. PubMed ID: 32123276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved Bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for Alzheimer's disease.
    Tanaka K; Tajima S; Takenaka S; Yoshida K
    Microb Cell Fact; 2013 Dec; 12():124. PubMed ID: 24325193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms.
    Zhang W; O'Connor K; Wang DI; Li Z
    Appl Environ Microbiol; 2009 Feb; 75(3):687-94. PubMed ID: 19047388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.
    Jeon H; Durairaj P; Lee D; Ahsan MM; Yun H
    J Microbiol Biotechnol; 2016 Dec; 26(12):2076-2086. PubMed ID: 27666994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease.
    Yamaoka M; Osawa S; Morinaga T; Takenaka S; Yoshida K
    Microb Cell Fact; 2011 Sep; 10():69. PubMed ID: 21896210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient pathway-driven
    Kurashiki R; Takahashi M; Okumura Y; Ono T; Endo H; Makino K; Fukui K; Yokoyama K; Ishikawa S; Yoshida K-i; Ohshiro T; Suzuki H
    Appl Environ Microbiol; 2024 Jul; 90(7):e0028124. PubMed ID: 38975762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second-generation Bacillus cell factory for rare inositol production.
    Tanaka K; Takanaka S; Yoshida K
    Bioengineered; 2014; 5(5):331-4. PubMed ID: 25482235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of Bacillus subtilis inositol dehydrogenase.
    Ramaley R; Fujita Y; Freese E
    J Biol Chem; 1979 Aug; 254(16):7684-90. PubMed ID: 112095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD
    Kang DM; Michon C; Morinaga T; Tanaka K; Takenaka S; Ishikawa S; Yoshida KI
    BMC Microbiol; 2017 Jul; 17(1):154. PubMed ID: 28693424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis.
    Hörl M; Fuhrer T; Zamboni N
    mBio; 2021 Apr; 12(2):. PubMed ID: 33824210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase.
    Wang Y; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1449-60. PubMed ID: 24048943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase.
    Yoshida KI; Yamaguchi M; Ikeda H; Omae K; Tsurusaki KI; Fujita Y
    Microbiology (Reading); 2004 Mar; 150(Pt 3):571-580. PubMed ID: 14993306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural investigation of myo-inositol dehydrogenase from Bacillus subtilis: implications for catalytic mechanism and inositol dehydrogenase subfamily classification.
    van Straaten KE; Zheng H; Palmer DR; Sanders DA
    Biochem J; 2010 Dec; 432(2):237-47. PubMed ID: 20809899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the thermal inactivation and the refolding of bacterial luciferases in Bacillus subtilis and in Escherichia coli differ.
    Gnuchikh E; Baranova A; Schukina V; Khaliullin I; Zavilgelsky G; Manukhov I
    PLoS One; 2019; 14(12):e0226576. PubMed ID: 31869349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.