These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36540258)
1. Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting. Zhou L; Peng T; Sun H; Wang S RSC Adv; 2022 Dec; 12(54):34990-35001. PubMed ID: 36540258 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Leaching of Titanium, Aluminum, and Magnesium Components during Dilute Acid Pressure Treatment of High-Titanium Blast Furnace Slag. Yuan K; He S; Yu B; Qian S; Wu X; Li W; Zhao C Molecules; 2024 Jul; 29(14):. PubMed ID: 39064916 [TBL] [Abstract][Full Text] [Related]
3. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH Zheng F; Guo Y; Qiu G; Chen F; Wang S; Sui Y; Jiang T; Yang L J Hazard Mater; 2018 Feb; 344():490-498. PubMed ID: 29096260 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of extracting valuable components from Ti-bearing blast furnace slag by acidolysis with sulphuric acid. Wang Y; Gao X; He S; Guo J Front Chem; 2024; 12():1369937. PubMed ID: 38389723 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic and Experimental Studies of Selective Decomposition of Diopside in Ti-Bearing Blast Furnace Slag. Kumai E; Yang F; Xiang L ACS Omega; 2024 Aug; 9(34):36635-36639. PubMed ID: 39220505 [TBL] [Abstract][Full Text] [Related]
6. Microwave roasting of blast furnace slag for carbon dioxide mineralization and energy analysis. Han Z; Gao J; Yuan X; Zhong Y; Ma X; Chen Z; Luo D; Wang Y RSC Adv; 2020 May; 10(30):17836-17844. PubMed ID: 35515632 [TBL] [Abstract][Full Text] [Related]
7. Recovery of scandium and neodymium from blast furnace slag using acid baking-water leaching. Kim J; Azimi G RSC Adv; 2020 Aug; 10(53):31936-31946. PubMed ID: 35518186 [TBL] [Abstract][Full Text] [Related]
8. Co-Removal of Fe/V Impurity in H Yang F; Peng Q; Wang J; Xiang L Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202467 [TBL] [Abstract][Full Text] [Related]
9. A novel approach for simultaneous recycling of Ti-bearing blast furnace slag, diamond wire saw Si powder, and Al alloy scrap for preparing TiSi Zhang Y; Lei Y; Ma W; Zhai C; Shi Z; Ren Y J Hazard Mater; 2022 Apr; 427():127905. PubMed ID: 34862105 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti-bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. Zhang Y; Lei Y; Ma W; Ren Y Waste Manag; 2023 Feb; 157():36-46. PubMed ID: 36521299 [TBL] [Abstract][Full Text] [Related]
11. An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag. Wang C; Lei Y; Ma W; Qiu P J Hazard Mater; 2021 Jan; 401():123446. PubMed ID: 32763720 [TBL] [Abstract][Full Text] [Related]
12. Manganese-cerium oxide (MnO Xu Y; Liu R; Ye F; Jia F; Ji L J Air Waste Manag Assoc; 2017 Aug; 67(8):899-909. PubMed ID: 28287904 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics and Kinetics of Sulfuric Acid Leaching Transformation of Rare Earth Fluoride Molten Salt Electrolysis Slag. Chen L; Xu J; Yu X; Tian L; Wang R; Xu Z Front Chem; 2021; 9():574722. PubMed ID: 33738275 [TBL] [Abstract][Full Text] [Related]
14. Mechanochemical activation of titanium slag for effective selective catalytic reduction of nitric oxide. Hou H; Zhou J; Ji M; Yue Y; Qian G; Zhang J Sci Total Environ; 2020 Nov; 743():140733. PubMed ID: 32673916 [TBL] [Abstract][Full Text] [Related]
15. Experimental study on full-volume slag alkali-activated mortars: Air-cooled blast furnace slag versus machine-made sand as fine aggregates. Shi J; Tan J; Liu B; Chen J; Dai J; He Z J Hazard Mater; 2021 Feb; 403():123983. PubMed ID: 33265022 [TBL] [Abstract][Full Text] [Related]
16. A novel roasting process to extract vanadium and chromium from high chromium vanadium slag using a NaOH-NaNO Teng A; Xue X J Hazard Mater; 2019 Nov; 379():120805. PubMed ID: 31238217 [TBL] [Abstract][Full Text] [Related]
17. Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting. Li N; Guo J; Chang Z; Dang H; Zhao X; Ali S; Li W; Zhou H; Sun C RSC Adv; 2019 Jul; 9(41):23908-23915. PubMed ID: 35530593 [TBL] [Abstract][Full Text] [Related]
18. Recycling of Ti and Si from Ti-bearing blast furnace slag and diamond wire saw silicon waste by flux alloying technique. Cao J; Gu HZ; Wu JJ; Wei KX; Zeng Y; Ma WH J Environ Manage; 2024 Jun; 362():121302. PubMed ID: 38824896 [TBL] [Abstract][Full Text] [Related]
19. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016 [TBL] [Abstract][Full Text] [Related]
20. The Influence of CaO and MgO on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Powder. Feng S; Zhu J; Wang R; Qu Z; Song L; Wang H Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]