These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36540868)

  • 1. Assessment of trends, variability and impacts of droughts across Brazil over the period 1980-2019.
    Tomasella J; Cunha APMA; Simões PA; Zeri M
    Nat Hazards (Dordr); 2023; 116(2):2173-2190. PubMed ID: 36540868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI).
    Kamruzzaman M; Almazroui M; Salam MA; Mondol MAH; Rahman MM; Deb L; Kundu PK; Zaman MAU; Islam ARMT
    Sci Rep; 2022 Nov; 12(1):20694. PubMed ID: 36450747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought evolution, severity and trends in mainland China over 1961-2013.
    Yao N; Li Y; Lei T; Peng L
    Sci Total Environ; 2018 Mar; 616-617():73-89. PubMed ID: 29107781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal evaluation of drought characteristics based on standard drought indices at various timescales over Uttar Pradesh, India.
    Gond S; Gupta N; Patel J; Dikshit PKS
    Environ Monit Assess; 2023 Mar; 195(3):439. PubMed ID: 36862238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of various drought indices at different timescales and over different record lengths in the arid area of northwest China.
    Li L; Cai H
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25096-25113. PubMed ID: 38466383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of drought indices in the analysis of spatial and temporal changes of climatic drought events in a basin.
    Li X; Sha J; Wang ZL
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10695-10707. PubMed ID: 30778933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new global database of meteorological drought events from 1951 to 2016.
    Spinoni J; Barbosa P; De Jager A; McCormick N; Naumann G; Vogt JV; Magni D; Masante D; Mazzeschi M
    J Hydrol Reg Stud; 2019 Apr; 22():100593. PubMed ID: 32257820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of meteorological drought at sub-catchment scale in Afghanistan using station-observed climate data.
    Chen Y; Penton D; Karim F; Aryal S; Wahid S; Taylor P; Cuddy SM
    PLoS One; 2023; 18(2):e0280522. PubMed ID: 36745664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydro-meteorological droughts across the Baltic Region: The role of the accumulation periods.
    Meilutytė-Lukauskienė D; Nazarenko S; Kobets Y; Akstinas V; Sharifi A; Haghighi AT; Hashemi H; Kokorīte I; Ozolina B
    Sci Total Environ; 2024 Feb; 913():169669. PubMed ID: 38176563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale assessments of droughts: A case study in Xinjiang, China.
    Yao J; Zhao Y; Chen Y; Yu X; Zhang R
    Sci Total Environ; 2018 Jul; 630():444-452. PubMed ID: 29486438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century.
    Somorowska U
    Sci Total Environ; 2022 Mar; 812():151465. PubMed ID: 34742798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs.
    Yao N; Li L; Feng P; Feng H; Li Liu D; Liu Y; Jiang K; Hu X; Li Y
    Sci Total Environ; 2020 Feb; 704():135245. PubMed ID: 31818549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal drought assessment of the Subarnarekha River basin, India, using CHIRPS-derived hydrometeorological indices.
    Tabassum F; Krishna AP
    Environ Monit Assess; 2022 Oct; 194(12):902. PubMed ID: 36251084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection.
    Zhu Y; Wang W; Singh VP; Liu Y
    Sci Total Environ; 2016 Nov; 571():1058-68. PubMed ID: 27450249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the impacts of climate change on climatic extremes in the Congo River Basin.
    Karam S; Seidou O; Nagabhatla N; Perera D; Tshimanga RM
    Clim Change; 2022; 170(3-4):40. PubMed ID: 35250125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial monitoring of meteorological drought characteristics based on the NASA POWER precipitation product over various regions of Iran.
    Kheyruri Y; Nikaein E; Sharafati A
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43619-43640. PubMed ID: 36662434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China.
    Liu C; Yang C; Yang Q; Wang J
    Sci Rep; 2021 Jan; 11(1):1280. PubMed ID: 33446853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observed drought indices show increasing divergence across Europe.
    Stagge JH; Kingston DG; Tallaksen LM; Hannah DM
    Sci Rep; 2017 Oct; 7(1):14045. PubMed ID: 29070800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand.
    Dewes CF; Rangwala I; Barsugli JJ; Hobbins MT; Kumar S
    PLoS One; 2017; 12(3):e0174045. PubMed ID: 28301603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal characteristics of drought and its correlation with climate indices in Northeast China.
    Yue Y; Liu H; Mu X; Qin M; Wang T; Wang Q; Yan Y
    PLoS One; 2021; 16(11):e0259774. PubMed ID: 34793494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.